<< Chapter < Page Chapter >> Page >

Verify that the function f ( x ) = 2 x 2 8 x + 6 defined over the interval [ 1 , 3 ] satisfies the conditions of Rolle’s theorem. Find all points c guaranteed by Rolle’s theorem.

c = 2

Got questions? Get instant answers now!

The mean value theorem and its meaning

Rolle’s theorem is a special case of the Mean Value Theorem. In Rolle’s theorem, we consider differentiable functions f that are zero at the endpoints. The Mean Value Theorem generalizes Rolle’s theorem by considering functions that are not necessarily zero at the endpoints. Consequently, we can view the Mean Value Theorem as a slanted version of Rolle’s theorem ( [link] ). The Mean Value Theorem states that if f is continuous over the closed interval [ a , b ] and differentiable over the open interval ( a , b ) , then there exists a point c ( a , b ) such that the tangent line to the graph of f at c is parallel to the secant line connecting ( a , f ( a ) ) and ( b , f ( b ) ) .

A vaguely sinusoidal function y = f(x) is drawn. On the x-axis, a, c1, c2, and b are marked. On the y-axis, f(a) and f(b) are marked. The function f(x) starts at (a, f(a)), decreases to c1, increases to c2, and then decreases to (b, f(b)). A secant line is drawn between (a, f(a)) and (b, f(b)), and it is noted that this line has slope (f(b) – f(a))/(b − a). The tangent lines at c1 and c2 are drawn, and these lines are parallel to the secant line. It is noted that the slopes of these tangent lines are f’(c1) and f’(c2), respectively.
The Mean Value Theorem says that for a function that meets its conditions, at some point the tangent line has the same slope as the secant line between the ends. For this function, there are two values c 1 and c 2 such that the tangent line to f at c 1 and c 2 has the same slope as the secant line.

Mean value theorem

Let f be continuous over the closed interval [ a , b ] and differentiable over the open interval ( a , b ) . Then, there exists at least one point c ( a , b ) such that

f ( c ) = f ( b ) f ( a ) b a .

Proof

The proof follows from Rolle’s theorem by introducing an appropriate function that satisfies the criteria of Rolle’s theorem. Consider the line connecting ( a , f ( a ) ) and ( b , f ( b ) ) . Since the slope of that line is

f ( b ) f ( a ) b a

and the line passes through the point ( a , f ( a ) ) , the equation of that line can be written as

y = f ( b ) f ( a ) b a ( x a ) + f ( a ) .

Let g ( x ) denote the vertical difference between the point ( x , f ( x ) ) and the point ( x , y ) on that line. Therefore,

g ( x ) = f ( x ) [ f ( b ) f ( a ) b a ( x a ) + f ( a ) ] .
A vaguely sinusoidal function y = f(x) is drawn. On the x-axis, a and b are marked. On the y-axis, f(a) and f(b) are marked. The function f(x) starts at (a, f(a)), decreases, then increases, and then decreases to (b, f(b)). A secant line is drawn between (a, f(a)) and (b, f(b)), and it is noted that this line has equation y = ((f(b) – f(a))/(b − a)) (x − a) + f(x). A line is drawn between the maximum of f(x) and the secant line and it is marked g(x).
The value g ( x ) is the vertical difference between the point ( x , f ( x ) ) and the point ( x , y ) on the secant line connecting ( a , f ( a ) ) and ( b , f ( b ) ) .

Since the graph of f intersects the secant line when x = a and x = b , we see that g ( a ) = 0 = g ( b ) . Since f is a differentiable function over ( a , b ) , g is also a differentiable function over ( a , b ) . Furthermore, since f is continuous over [ a , b ] , g is also continuous over [ a , b ] . Therefore, g satisfies the criteria of Rolle’s theorem. Consequently, there exists a point c ( a , b ) such that g ( c ) = 0 . Since

g ( x ) = f ( x ) f ( b ) f ( a ) b a ,

we see that

g ( c ) = f ( c ) f ( b ) f ( a ) b a .

Since g ( c ) = 0 , we conclude that

f ( c ) = f ( b ) f ( a ) b a .

In the next example, we show how the Mean Value Theorem can be applied to the function f ( x ) = x over the interval [ 0 , 9 ] . The method is the same for other functions, although sometimes with more interesting consequences.

Verifying that the mean value theorem applies

For f ( x ) = x over the interval [ 0 , 9 ] , show that f satisfies the hypothesis of the Mean Value Theorem, and therefore there exists at least one value c ( 0 , 9 ) such that f ( c ) is equal to the slope of the line connecting ( 0 , f ( 0 ) ) and ( 9 , f ( 9 ) ) . Find these values c guaranteed by the Mean Value Theorem.

We know that f ( x ) = x is continuous over [ 0 , 9 ] and differentiable over ( 0 , 9 ) . Therefore, f satisfies the hypotheses of the Mean Value Theorem, and there must exist at least one value c ( 0 , 9 ) such that f ( c ) is equal to the slope of the line connecting ( 0 , f ( 0 ) ) and ( 9 , f ( 9 ) ) ( [link] ). To determine which value(s) of c are guaranteed, first calculate the derivative of f . The derivative f ( x ) = 1 ( 2 x ) . The slope of the line connecting ( 0 , f ( 0 ) ) and ( 9 , f ( 9 ) ) is given by

f ( 9 ) f ( 0 ) 9 0 = 9 0 9 0 = 3 9 = 1 3 .

We want to find c such that f ( c ) = 1 3 . That is, we want to find c such that

1 2 c = 1 3 .

Solving this equation for c , we obtain c = 9 4 . At this point, the slope of the tangent line equals the slope of the line joining the endpoints.

The function f(x) = the square root of x is graphed from (0, 0) to (9, 3). There is a secant line drawn from (0, 0) to (9, 3). At point (9/4, 3/2), there is a tangent line that is drawn, and this line is parallel to the secant line.
The slope of the tangent line at c = 9 / 4 is the same as the slope of the line segment connecting ( 0 , 0 ) and ( 9 , 3 ) .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

questions solve y=sin x
Obi Reply
Solve it for what?
Tim
you have to apply the function arcsin in both sides and you get arcsin y = acrsin (sin x) the the function arcsin and function sin cancel each other so the ecuation becomes arcsin y = x you can also write x= arcsin y
Ioana
what is the question ? what is the answer?
Suman
there is an equation that should be solve for x
Ioana
ok solve it
Suman
are you saying y is of sin(x) y=sin(x)/sin of both sides to solve for x... therefore y/sin =x
Tyron
or solve for sin(x) via the unit circle
Tyron
what is unit circle
Suman
a circle whose radius is 1.
Darnell
the unit circle is covered in pre cal...and or trigonometry. it is the multipcation table of upper level mathematics.
Tyron
what is function?
Ryan Reply
A set of points in which every x value (domain) corresponds to exactly one y value (range)
Tim
what is lim (x,y)~(0,0) (x/y)
NIKI Reply
limited of x,y at 0,0 is nt defined
Alswell
But using L'Hopitals rule is x=1 is defined
Alswell
Could U explain better boss?
emmanuel
value of (x/y) as (x,y) tends to (0,0) also whats the value of (x+y)/(x^2+y^2) as (x,y) tends to (0,0)
NIKI
can we apply l hospitals rule for function of two variables
NIKI
why n does not equal -1
K.kupar Reply
ask a complete question if you want a complete answer.
Andrew
I agree with Andrew
Bg
f (x) = a is a function. It's a constant function.
Darnell Reply
proof the formula integration of udv=uv-integration of vdu.?
Bg Reply
Find derivative (2x^3+6xy-4y^2)^2
Rasheed Reply
no x=2 is not a function, as there is nothing that's changing.
Vivek Reply
are you sure sir? please make it sure and reply please. thanks a lot sir I'm grateful.
The
i mean can we replace the roles of x and y and call x=2 as function
The
if x =y and x = 800 what is y
Joys Reply
y=800
Gift
800
Bg
how do u factor the numerator?
Drew Reply
Nonsense, you factor numbers
Antonio
You can factorize the numerator of an expression. What's the problem there? here's an example. f(x)=((x^2)-(y^2))/2 Then numerator is x squared minus y squared. It's factorized as (x+y)(x-y). so the overall function becomes : ((x+y)(x-y))/2
The
The problem is the question, is not a problem where it is, but what it is
Antonio
I think you should first know the basics man: PS
Vishal
Yes, what factorization is
Antonio
Antonio bro is x=2 a function?
The
Yes, and no.... Its a function if for every x, y=2.... If not is a single value constant
Antonio
you could define it as a constant function if you wanted where a function of "y" defines x f(y) = 2 no real use to doing that though
zach
Why y, if domain its usually defined as x, bro, so you creates confusion
Antonio
Its f(x) =y=2 for every x
Antonio
Yes but he said could you put x = 2 as a function you put y = 2 as a function
zach
F(y) in this case is not a function since for every value of y you have not a single point but many ones, so there is not f(y)
Antonio
x = 2 defined as a function of f(y) = 2 says for every y x will equal 2 this silly creates a vertical line and is equivalent to saying x = 2 just in a function notation as the user above asked. you put f(x) = 2 this means for every x y is 2 this creates a horizontal line and is not equivalent
zach
The said x=2 and that 2 is y
Antonio
that 2 is not y, y is a variable 2 is a constant
zach
So 2 is defined as f(x) =2
Antonio
No y its constant =2
Antonio
what variable does that function define
zach
the function f(x) =2 takes every input of x within it's domain and gives 2 if for instance f:x -> y then for every x, y =2 giving a horizontal line this is NOT equivalent to the expression x = 2
zach
Yes true, y=2 its a constant, so a line parallel to y axix as function of y
Antonio
Sorry x=2
Antonio
And you are right, but os not a function of x, its a function of y
Antonio
As function of x is meaningless, is not a finction
Antonio
yeah you mean what I said in my first post, smh
zach
I mean (0xY) +x = 2 so y can be as you want, the result its 2 every time
Antonio
OK you can call this "function" on a set {2}, but its a single value function, a constant
Antonio
well as long as you got there eventually
zach
2x^3+6xy-4y^2)^2 solve this
femi
follow algebraic method. look under factoring numerator from Khan academy
moe
volume between cone z=√(x^2+y^2) and plane z=2
Kranthi Reply
answer please?
Fatima
It's an integral easy
Antonio
V=1/3 h π (R^2+r2+ r*R(
Antonio
How do we find the horizontal asymptote of a function using limits?
Lerato Reply
Easy lim f(x) x-->~ =c
Antonio
solutions for combining functions
Amna Reply
what is a function? f(x)
Jeremy Reply
one that is one to one, one that passes the vertical line test
Andrew
It's a law f() that to every point (x) on the Domain gives a single point in the codomain f(x)=y
Antonio
is x=2 a function?
The
restate the problem. and I will look. ty
jon Reply
is x=2 a function?
The
Practice Key Terms 2

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask