



Key concepts
 A table of values or graph may be used to estimate a limit.
 If the limit of a function at a point does not exist, it is still possible that the limits from the left and right at that point may exist.
 If the limits of a function from the left and right exist and are equal, then the limit of the function is that common value.
 We may use limits to describe infinite behavior of a function at a point.
Key equations

Intuitive Definition of the Limit
$\underset{x\to a}{\text{lim}}f\left(x\right)=L$

Two Important Limits
$\underset{x\to a}{\text{lim}}x=a\phantom{\rule{1em}{0ex}}\underset{x\to a}{\text{lim}}c=c$

OneSided Limits
$\underset{x\to {a}^{}}{\text{lim}}f\left(x\right)=L\phantom{\rule{1em}{0ex}}\underset{x\to {a}^{+}}{\text{lim}}f\left(x\right)=L$

Infinite Limits from the Left
$\underset{x\to {a}^{}}{\text{lim}}f\left(x\right)=\text{+}\infty \phantom{\rule{1em}{0ex}}\underset{x\to {a}^{}}{\text{lim}}f\left(x\right)=\text{\u2212}\infty $

Infinite Limits from the Right
$\underset{x\to {a}^{+}}{\text{lim}}f\left(x\right)=\text{+}\infty \phantom{\rule{1em}{0ex}}\underset{x\to {a}^{+}}{\text{lim}}f\left(x\right)=\text{\u2212}\infty $

TwoSided Infinite Limits
$\underset{x\to a}{\text{lim}}f\left(x\right)=\text{+}\infty :\underset{x\to {a}^{}}{\text{lim}}f\left(x\right)=\text{+}\infty $ and
$\underset{x\to {a}^{+}}{\text{lim}}f\left(x\right)=\text{+}\infty $
$\underset{x\to a}{\text{lim}}f\left(x\right)=\text{\u2212}\infty :\underset{x\to {a}^{}}{\text{lim}}f\left(x\right)=\text{\u2212}\infty $ and
$\underset{x\to {a}^{+}}{\text{lim}}f\left(x\right)=\text{\u2212}\infty $
For the following exercises, consider the function
$f\left(x\right)=\frac{{x}^{2}1}{\leftx1\right}.$
[T] Complete the following table for the function. Round your solutions to four decimal places.
x 
$f\left(x\right)$ 
x 
$f\left(x\right)$ 
0.9 
a. 
1.1 
e. 
0.99 
b. 
1.01 
f. 
0.999 
c. 
1.001 
g. 
0.9999 
d. 
1.0001 
h. 
Got questions? Get instant answers now!
What do your results in the preceding exercise indicate about the twosided limit
$\underset{x\to 1}{\text{lim}}f\left(x\right)?$ Explain your response.
$\underset{x\to 1}{\text{lim}}f\left(x\right)$ does not exist because
$\underset{x\to {1}^{}}{\text{lim}}f\left(x\right)=\mathrm{2}\ne \underset{x\to {1}^{+}}{\text{lim}}f\left(x\right)=2.$
Got questions? Get instant answers now!
For the following exercises, consider the function
$f\left(x\right)={\left(1+x\right)}^{1\text{/}x}.$
[T] Make a table showing the values of
f for
$x=\mathrm{0.01},\mathrm{0.001},\mathrm{0.0001},\mathrm{0.00001}$ and for
$x=0.01,0.001,0.0001,0.00001.$ Round your solutions to five decimal places.
x 
$f\left(x\right)$ 
x 
$f\left(x\right)$ 
−0.01 
a. 
0.01 
e. 
−0.001 
b. 
0.001 
f. 
−0.0001 
c. 
0.0001 
g. 
−0.00001 
d. 
0.00001 
h. 
Got questions? Get instant answers now!
What does the table of values in the preceding exercise indicate about the function
$f\left(x\right)={\left(1+x\right)}^{1\text{/}x}?$
$\underset{x\to 0}{\text{lim}}{\left(1+x\right)}^{1\text{/}x}=2.7183$
Got questions? Get instant answers now!
In the following exercises, use the given values to set up a table to evaluate the limits. Round your solutions to eight decimal places.
[T]
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}2x}{x};\phantom{\rule{0.2em}{0ex}}\mathrm{\pm 0.1},\mathrm{\pm 0.01},\mathrm{\pm 0.001},\mathrm{\pm .0001}$
x 
$\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}2x}{x}$ 
x 
$\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}2x}{x}$ 
−0.1 
a. 
0.1 
e. 
−0.01 
b. 
0.01 
f. 
−0.001 
c. 
0.001 
g. 
−0.0001 
d. 
0.0001 
h. 
a. 1.98669331; b. 1.99986667; c. 1.99999867; d. 1.99999999; e. 1.98669331; f. 1.99986667; g. 1.99999867; h. 1.99999999;
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}2x}{x}=2$
Got questions? Get instant answers now!
[T]
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}3x}{x}$ ±0.1, ±0.01, ±0.001, ±0.0001
X 
$\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}3x}{x}$ 
x 
$\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}3x}{x}$ 
−0.1 
a. 
0.1 
e. 
−0.01 
b. 
0.01 
f. 
−0.001 
c. 
0.001 
g. 
−0.0001 
d. 
0.0001 
h. 
Got questions? Get instant answers now!
Use the preceding two exercises to conjecture (guess) the value of the following limit:
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}ax}{x}$ for
a , a positive real value.
$\underset{x\to 0}{\text{lim}}\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}ax}{x}=a$
Got questions? Get instant answers now!
[T] In the following exercises, set up a table of values to find the indicated limit. Round to eight digits.
$\underset{x\to 2}{\text{lim}}\frac{{x}^{2}4}{{x}^{2}+x6}$
x 
$\frac{{x}^{2}4}{{x}^{2}+x6}$ 
x 
$\frac{{x}^{2}4}{{x}^{2}+x6}$ 
1.9 
a. 
2.1 
e. 
1.99 
b. 
2.01 
f. 
1.999 
c. 
2.001 
g. 
1.9999 
d. 
2.0001 
h. 
Got questions? Get instant answers now!
$\underset{x\to 1}{\text{lim}}\left(12x\right)$
x 
$12x$ 
x 
$12x$ 
0.9 
a. 
1.1 
e. 
0.99 
b. 
1.01 
f. 
0.999 
c. 
1.001 
g. 
0.9999 
d. 
1.0001 
h. 
a. −0.80000000; b. −0.98000000; c. −0.99800000; d. −0.99980000; e. −1.2000000; f. −1.0200000; g. −1.0020000; h. −1.0002000;
$\underset{x\to 1}{\text{lim}}\left(12x\right)=\mathrm{1}$
Got questions? Get instant answers now!
$\underset{x\to 0}{\text{lim}}\frac{5}{1{e}^{1\text{/}x}}$
x 
$\frac{5}{1{e}^{1\text{/}x}}$ 
x 
$\frac{5}{1{e}^{1\text{/}x}}$ 
−0.1 
a. 
0.1 
e. 
−0.01 
b. 
0.01 
f. 
−0.001 
c. 
0.001 
g. 
−0.0001 
d. 
0.0001 
h. 
Got questions? Get instant answers now!
$\underset{z\to 0}{\text{lim}}\frac{z1}{{z}^{2}\left(z+3\right)}$
z 
$\frac{z1}{{z}^{2}\left(z+3\right)}$ 
z 
$\frac{z1}{{z}^{2}\left(z+3\right)}$ 
−0.1 
a. 
0.1 
e. 
−0.01 
b. 
0.01 
f. 
−0.001 
c. 
0.001 
g. 
−0.0001 
d. 
0.0001 
h. 
a. −37.931934; b. −3377.9264; c. −333,777.93; d. −33,337,778; e. −29.032258; f. −3289.0365; g. −332,889.04; h. −33,328,889
$\underset{x\to 0}{\text{lim}}\frac{z1}{{z}^{2}\left(z+3\right)}=\text{\u2212}\infty $
Got questions? Get instant answers now!
Questions & Answers
find the nth differential coefficient of cosx.cos2x.cos3x
determine the inverse(onetoone function) of f(x)=x(cube)+4 and draw the graph if the function and its inverse
f(x) = x^3 + 4, to find inverse switch x and you and isolate y:
x = y^3 + 4
x 4 = y^3
(x4)^1/3 = y = f^1(x)
Andrew
in the example exercise how does it go from
4 + squareroot(8)/4
to
4 + 2squareroot(2)/4
what is the process of pulling out the factor like that?
can you please post the question again here so I can see what your talking about
Andrew
√(8)
=√(4x2)
=√4 x √2
2 √2
hope this helps.
from the surds theory
a^c x b^c = (ab)^c
Barnabas
can you determine whether f(x)=x(cube) +4 is a one to one function
Crystal
one to one means that every input has a single output, and not multiple outputs. whenever the highest power of a given polynomial is odd then that function is said to be odd. a big help to help you understand this concept would be to graph the function and see visually what's going on.
Andrew
one to one means that every input has a single output, and not multiple outputs. whenever the highest power of a given polynomial is odd then that function is said to be odd. a big help to help you understand this concept would be to graph the function and see visually what's going on.
Andrew
can you show the steps from going from
3/(x2)= y
to
x= 3/y +2
I'm confused as to how y ends up as the divisor
step 1: take reciprocal of both sides
(x2)/3 = 1/y
step 2: multiply both sides by 3
x2 = 3/y
step 3: add 2 to both sides
x = 3/y + 2
ps nice farcry 3 background!
Andrew
first you cross multiply and get y(x2)=3
then apply distribution and the left side of the equation such as yx2y=3
then you add 2y in both sides of the equation and get yx=3+2y
and last divide both sides of the equation by y and you get x=3/y+2
Ioana
Multiply both sides by (x2) to get 3=y(x2)
Then you can divide both sides by y (it's just a multiplied term now) to get 3/y = (x2). Since the parentheses aren't doing anything for the right side, you can drop them, and add the 2 to both sides to get 3/y + 2 = x
Melin
thank you ladies and gentlemen I appreciate the help!
Robert
keep practicing and asking questions, practice makes perfect! and be aware that are often different paths to the same answer, so the more you familiarize yourself with these multiple different approaches, the less confused you'll be.
Andrew
please how do I learn integration
they are simply "antiderivatives". so you should first learn how to take derivatives of any given function before going into taking integrals of any given function.
Andrew
best way to learn is always to look into a few basic examples of different kinds of functions, and then if you have any further questions, be sure to state specifically which step in the solution you are not understanding.
Andrew
example 1)
say f'(x) = x, f(x) = ?
well there is a rule called the 'power rule' which states that if f'(x) = x^n, then f(x) = x^(n+1)/(n+1)
so in this case, f(x) = x^2/2
Andrew
great noticeable direction
Isaac
limit x tend to infinite xcos(π/2x)*sin(π/4x)
can you give me a problem for function. a trigonometric one
state and prove L hospital rule
I want to know about hospital rule
Faysal
If you tell me how can I Know about engineering math 1( sugh as any lecture or tutorial)
Faysal
I don't know either i am also new,first year college ,taking computer engineer,and.trying to advance learning
Amor
if you want some help on l hospital rule ask me
Jawad
it's spelled hopital
Connor
you are correct Connor Angeli, the L'Hospital was the old one but the modern way to say is L 'Hôpital.
Leo
I had no clue this was an online app
Connor
Total online shopping during the Christmas holidays has increased dramatically during the past 5 years. In 2012 (t=0), total online holiday sales were $42.3 billion, whereas in 2013 they were $48.1 billion. Find a linear function S that estimates the total online holiday sales in the year t . Interpret the slope of the graph of S . Use part a. to predict the year when online shopping during Christmas will reach $60 billion?
what is the derivative of x= Arc sin (x)^1/2
differentiate implicitly
Pitior
then solve for dy/dx
Pitior
thank you it was very helpful
morfling
you have to apply the function arcsin in both sides and you get
arcsin y = acrsin (sin x)
the the function arcsin and function sin cancel each other so the ecuation becomes
arcsin y = x
you can also write
x= arcsin y
Ioana
what is the question ? what is the answer?
Suman
there is an equation that should be solve for x
Ioana
are you saying y is of sin(x)
y=sin(x)/sin of both sides to solve for x... therefore y/sin =x
Tyron
or solve for sin(x) via the unit circle
Tyron
what is unit circle
Suman
a circle whose radius is 1.
Darnell
the unit circle is covered in pre cal...and or trigonometry. it is the multipcation table of upper level mathematics.
Tyron
A set of points in which every x value (domain) corresponds to exactly one y value (range)
Tim
what is lim (x,y)~(0,0) (x/y)
limited of x,y at 0,0 is nt defined
Alswell
But using L'Hopitals rule is x=1 is defined
Alswell
Could U explain better boss?
emmanuel
value of (x/y) as (x,y) tends to (0,0)
also whats the value of (x+y)/(x^2+y^2) as (x,y) tends to (0,0)
NIKI
can we apply l hospitals rule for function of two variables
NIKI
ask a complete question if you want a complete answer.
Andrew
f (x) = a is a function. It's a constant function.
Source:
OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.