<< Chapter < Page Chapter >> Page >
  • Determine the conditions for when a function has an inverse.
  • Use the horizontal line test to recognize when a function is one-to-one.
  • Find the inverse of a given function.
  • Draw the graph of an inverse function.
  • Evaluate inverse trigonometric functions.

An inverse function reverses the operation done by a particular function. In other words, whatever a function does, the inverse function undoes it. In this section, we define an inverse function formally and state the necessary conditions for an inverse function to exist. We examine how to find an inverse function and study the relationship between the graph of a function and the graph of its inverse. Then we apply these ideas to define and discuss properties of the inverse trigonometric functions.

Existence of an inverse function

We begin with an example. Given a function f and an output y = f ( x ) , we are often interested in finding what value or values x were mapped to y by f . For example, consider the function f ( x ) = x 3 + 4 . Since any output y = x 3 + 4 , we can solve this equation for x to find that the input is x = y 4 3 . This equation defines x as a function of y . Denoting this function as f −1 , and writing x = f −1 ( y ) = y 4 3 , we see that for any x in the domain of f , f −1 ( f ( x ) ) = f −1 ( x 3 + 4 ) = x . Thus, this new function, f −1 , “undid” what the original function f did. A function with this property is called the inverse function of the original function.

Definition

Given a function f with domain D and range R , its inverse function    (if it exists) is the function f −1 with domain R and range D such that f −1 ( y ) = x if f ( x ) = y . In other words, for a function f and its inverse f −1 ,

f −1 ( f ( x ) ) = x for all x in D , and f ( f −1 ( y ) ) = y for all y in R .

Note that f −1 is read as “f inverse.” Here, the −1 is not used as an exponent and f −1 ( x ) 1 / f ( x ) . [link] shows the relationship between the domain and range of f and the domain and range of f −1 .

An image of two bubbles. The first bubble is orange and has two labels: the top label is “Domain of f” and the bottom label is “Range of f inverse”. Within this bubble is the variable “x”. An orange arrow with the label “f” points from this bubble to the second bubble. The second bubble is blue and has two labels: the top label is “range of f” and the bottom label is “domain of f inverse”. Within this bubble is the variable “y”. A blue arrow with the label “f inverse” points from this bubble to the first bubble.
Given a function f and its inverse f −1 , f −1 ( y ) = x if and only if f ( x ) = y . The range of f becomes the domain of f −1 and the domain of f becomes the range of f −1 .

Recall that a function has exactly one output for each input. Therefore, to define an inverse function, we need to map each input to exactly one output. For example, let’s try to find the inverse function for f ( x ) = x 2 . Solving the equation y = x 2 for x , we arrive at the equation x = ± y . This equation does not describe x as a function of y because there are two solutions to this equation for every y > 0 . The problem with trying to find an inverse function for f ( x ) = x 2 is that two inputs are sent to the same output for each output y > 0 . The function f ( x ) = x 3 + 4 discussed earlier did not have this problem. For that function, each input was sent to a different output. A function that sends each input to a different output is called a one-to-one function.

Definition

We say a f is a one-to-one function    if f ( x 1 ) f ( x 2 ) when x 1 x 2 .

One way to determine whether a function is one-to-one is by looking at its graph. If a function is one-to-one, then no two inputs can be sent to the same output. Therefore, if we draw a horizontal line anywhere in the x y -plane, according to the horizontal line test    , it cannot intersect the graph more than once. We note that the horizontal line test is different from the vertical line test. The vertical line test determines whether a graph is the graph of a function. The horizontal line test determines whether a function is one-to-one ( [link] ).

Questions & Answers

find the nth differential coefficient of cosx.cos2x.cos3x
Sudhanayaki Reply
determine the inverse(one-to-one function) of f(x)=x(cube)+4 and draw the graph if the function and its inverse
Crystal Reply
f(x) = x^3 + 4, to find inverse switch x and you and isolate y: x = y^3 + 4 x -4 = y^3 (x-4)^1/3 = y = f^-1(x)
Andrew
in the example exercise how does it go from -4 +- squareroot(8)/-4 to -4 +- 2squareroot(2)/-4 what is the process of pulling out the factor like that?
Robert Reply
can you please post the question again here so I can see what your talking about
Andrew
√(8) =√(4x2) =√4 x √2 2 √2 hope this helps. from the surds theory a^c x b^c = (ab)^c
Barnabas
564356
Myong
can you determine whether f(x)=x(cube) +4 is a one to one function
Crystal
one to one means that every input has a single output, and not multiple outputs. whenever the highest power of a given polynomial is odd then that function is said to be odd. a big help to help you understand this concept would be to graph the function and see visually what's going on.
Andrew
one to one means that every input has a single output, and not multiple outputs. whenever the highest power of a given polynomial is odd then that function is said to be odd. a big help to help you understand this concept would be to graph the function and see visually what's going on.
Andrew
can you show the steps from going from 3/(x-2)= y to x= 3/y +2 I'm confused as to how y ends up as the divisor
Robert Reply
step 1: take reciprocal of both sides (x-2)/3 = 1/y step 2: multiply both sides by 3 x-2 = 3/y step 3: add 2 to both sides x = 3/y + 2 ps nice farcry 3 background!
Andrew
first you cross multiply and get y(x-2)=3 then apply distribution and the left side of the equation such as yx-2y=3 then you add 2y in both sides of the equation and get yx=3+2y and last divide both sides of the equation by y and you get x=3/y+2
Ioana
Multiply both sides by (x-2) to get 3=y(x-2) Then you can divide both sides by y (it's just a multiplied term now) to get 3/y = (x-2). Since the parentheses aren't doing anything for the right side, you can drop them, and add the 2 to both sides to get 3/y + 2 = x
Melin
thank you ladies and gentlemen I appreciate the help!
Robert
keep practicing and asking questions, practice makes perfect! and be aware that are often different paths to the same answer, so the more you familiarize yourself with these multiple different approaches, the less confused you'll be.
Andrew
please how do I learn integration
aliyu Reply
they are simply "anti-derivatives". so you should first learn how to take derivatives of any given function before going into taking integrals of any given function.
Andrew
best way to learn is always to look into a few basic examples of different kinds of functions, and then if you have any further questions, be sure to state specifically which step in the solution you are not understanding.
Andrew
example 1) say f'(x) = x, f(x) = ? well there is a rule called the 'power rule' which states that if f'(x) = x^n, then f(x) = x^(n+1)/(n+1) so in this case, f(x) = x^2/2
Andrew
great noticeable direction
Isaac
limit x tend to infinite xcos(π/2x)*sin(π/4x)
Abhijeet Reply
can you give me a problem for function. a trigonometric one
geovanni Reply
state and prove L hospital rule
Krishna Reply
I want to know about hospital rule
Faysal
If you tell me how can I Know about engineering math 1( sugh as any lecture or tutorial)
Faysal
I don't know either i am also new,first year college ,taking computer engineer,and.trying to advance learning
Amor
if you want some help on l hospital rule ask me
Jawad
it's spelled hopital
Connor
hi
BERNANDINO
you are correct Connor Angeli, the L'Hospital was the old one but the modern way to say is L 'Hôpital.
Leo
I had no clue this was an online app
Connor
Total online shopping during the Christmas holidays has increased dramatically during the past 5 years. In 2012 (t=0), total online holiday sales were $42.3 billion, whereas in 2013 they were $48.1 billion. Find a linear function S that estimates the total online holiday sales in the year t . Interpret the slope of the graph of S . Use part a. to predict the year when online shopping during Christmas will reach $60 billion?
Nguyen Reply
what is the derivative of x= Arc sin (x)^1/2
morfling Reply
y^2 = arcsin(x)
Pitior
x = sin (y^2)
Pitior
differentiate implicitly
Pitior
then solve for dy/dx
Pitior
thank you it was very helpful
morfling
questions solve y=sin x
Obi Reply
Solve it for what?
Tim
you have to apply the function arcsin in both sides and you get arcsin y = acrsin (sin x) the the function arcsin and function sin cancel each other so the ecuation becomes arcsin y = x you can also write x= arcsin y
Ioana
what is the question ? what is the answer?
Suman
there is an equation that should be solve for x
Ioana
ok solve it
Suman
are you saying y is of sin(x) y=sin(x)/sin of both sides to solve for x... therefore y/sin =x
Tyron
or solve for sin(x) via the unit circle
Tyron
what is unit circle
Suman
a circle whose radius is 1.
Darnell
the unit circle is covered in pre cal...and or trigonometry. it is the multipcation table of upper level mathematics.
Tyron
what is function?
Ryan Reply
A set of points in which every x value (domain) corresponds to exactly one y value (range)
Tim
what is lim (x,y)~(0,0) (x/y)
NIKI Reply
limited of x,y at 0,0 is nt defined
Alswell
But using L'Hopitals rule is x=1 is defined
Alswell
Could U explain better boss?
emmanuel
value of (x/y) as (x,y) tends to (0,0) also whats the value of (x+y)/(x^2+y^2) as (x,y) tends to (0,0)
NIKI
can we apply l hospitals rule for function of two variables
NIKI
why n does not equal -1
K.kupar Reply
ask a complete question if you want a complete answer.
Andrew
I agree with Andrew
Bg
f (x) = a is a function. It's a constant function.
Darnell Reply
Practice Key Terms 5

Get the best Calculus volume 1 course in your pocket!





Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask