0.3 Review of pre-calculus

 Page 1 / 1

Formulas from geometry

$A=\text{area},$ $V=\text{Volume},\phantom{\rule{0.2em}{0ex}}\text{and}$ $S=\text{lateral surface area}$

Laws of exponents

$\begin{array}{ccccccccccccc}\hfill {x}^{m}{x}^{n}& =\hfill & {x}^{m+n}\hfill & & & \hfill \frac{{x}^{m}}{{x}^{n}}& =\hfill & {x}^{m-n}\hfill & & & \hfill {\left({x}^{m}\right)}^{n}& =\hfill & {x}^{mn}\hfill \\ \hfill {x}^{\text{−}n}& =\hfill & \frac{1}{{x}^{n}}\hfill & & & \hfill {\left(xy\right)}^{n}& =\hfill & {x}^{n}{y}^{n}\hfill & & & \hfill {\left(\frac{x}{y}\right)}^{n}& =\hfill & \frac{{x}^{n}}{{y}^{n}}\hfill \\ \hfill {x}^{1\text{/}n}& =\hfill & \sqrt[n]{x}\hfill & & & \hfill \sqrt[n]{xy}& =\hfill & \sqrt[n]{x}\sqrt[n]{y}\hfill & & & \hfill \sqrt[n]{\frac{x}{y}}& =\hfill & \frac{\sqrt[n]{x}}{\sqrt[n]{y}}\hfill \\ \hfill {x}^{m\text{/}n}& =\hfill & \sqrt[n]{{x}^{m}}={\left(\sqrt[n]{x}\right)}^{m}\hfill & & & & & & & & & & \end{array}$

Special factorizations

$\begin{array}{ccc}\hfill {x}^{2}-{y}^{2}& =\hfill & \left(x+y\right)\left(x-y\right)\hfill \\ \hfill {x}^{3}+{y}^{3}& =\hfill & \left(x+y\right)\left({x}^{2}-xy+{y}^{2}\right)\hfill \\ \hfill {x}^{3}-{y}^{3}& =\hfill & \left(x-y\right)\left({x}^{2}+xy+{y}^{2}\right)\hfill \end{array}$

Quadratic formula

If $a{x}^{2}+bx+c=0,$ then $x=\frac{\text{−}b±\sqrt{{b}^{2}-4ca}}{2a}.$

Binomial theorem

${\left(a+b\right)}^{n}={a}^{n}+\left(\begin{array}{l}n\\ 1\end{array}\right){a}^{n-1}b+\left(\begin{array}{l}n\\ 2\end{array}\right){a}^{n-2}{b}^{2}+\cdots +\left(\begin{array}{c}n\\ n-1\end{array}\right)a{b}^{n-1}+{b}^{n},$

where $\left(\begin{array}{l}n\\ k\end{array}\right)=\frac{n\left(n-1\right)\left(n-2\right)\cdots \left(n-k+1\right)}{k\left(k-1\right)\left(k-2\right)\cdots 3\cdot 2\cdot 1}=\frac{n!}{k!\left(n-k\right)!}$

Right-angle trigonometry

$\begin{array}{cccc}\text{sin}\phantom{\rule{0.1em}{0ex}}\theta =\frac{\text{opp}}{\text{hyp}}\hfill & & & \text{csc}\phantom{\rule{0.1em}{0ex}}\theta =\frac{\text{hyp}}{\text{opp}}\hfill \\ \text{cos}\phantom{\rule{0.1em}{0ex}}\theta =\frac{\text{adj}}{\text{hyp}}\hfill & & & \text{sec}\phantom{\rule{0.1em}{0ex}}\theta =\frac{\text{hyp}}{\text{adj}}\hfill \\ \text{tan}\phantom{\rule{0.1em}{0ex}}\theta =\frac{\text{opp}}{\text{adj}}\hfill & & & \text{cot}\phantom{\rule{0.1em}{0ex}}\theta =\frac{\text{adj}}{\text{opp}}\hfill \end{array}$

Trigonometric functions of important angles

 $\theta$ $\text{Radians}$ $\text{sin}\phantom{\rule{0.1em}{0ex}}\theta$ $\text{cos}\phantom{\rule{0.1em}{0ex}}\theta$ $\text{tan}\phantom{\rule{0.1em}{0ex}}\theta$ $0\text{°}$ $0$ $0$ $1$ $0$ $30\text{°}$ $\text{π}\text{/}\text{6}$ $1\text{/}2$ $\sqrt{3}\text{/}2$ $\sqrt{3}\text{/}3$ $45\text{°}$ $\text{π}\text{/}\text{4}$ $\sqrt{2}\text{/}2$ $\sqrt{2}\text{/}2$ $1$ $60\text{°}$ $\text{π}\text{/}\text{3}$ $\sqrt{3}\text{/}2$ $1\text{/}2$ $\sqrt{3}$ $90\text{°}$ $\text{π}\text{/}2$ $1$ $0$ —

Fundamental identities

$\begin{array}{cccccccc}\hfill {\text{sin}}^{2}\theta +{\text{cos}}^{2}\theta & =\hfill & 1\hfill & & & \hfill \text{sin}\left(\text{−}\phantom{\rule{0.1em}{0ex}}\theta \right)& =\hfill & \text{−}\text{sin}\phantom{\rule{0.1em}{0ex}}\theta \hfill \\ \hfill 1+{\text{tan}}^{2}\theta & =\hfill & {\text{sec}}^{2}\theta \hfill & & & \hfill \text{cos}\left(\text{−}\phantom{\rule{0.1em}{0ex}}\theta \right)& =\hfill & \text{cos}\phantom{\rule{0.1em}{0ex}}\theta \hfill \\ \hfill 1+{\text{cot}}^{2}\theta & =\hfill & {\text{csc}}^{2}\theta \hfill & & & \hfill \text{tan}\left(\text{−}\phantom{\rule{0.1em}{0ex}}\theta \right)& =\hfill & \text{−}\text{tan}\phantom{\rule{0.1em}{0ex}}\theta \hfill \\ \hfill \text{sin}\left(\frac{\pi }{2}-\theta \right)& =\hfill & \text{cos}\phantom{\rule{0.1em}{0ex}}\theta \hfill & & & \hfill \text{sin}\left(\theta +2\pi \right)& =\hfill & \text{sin}\phantom{\rule{0.1em}{0ex}}\theta \hfill \\ \hfill \text{cos}\left(\frac{\pi }{2}-\theta \right)& =\hfill & \text{sin}\phantom{\rule{0.1em}{0ex}}\theta \hfill & & & \hfill \text{cos}\left(\theta +2\pi \right)& =\hfill & \text{cos}\phantom{\rule{0.1em}{0ex}}\theta \hfill \\ \hfill \text{tan}\left(\frac{\pi }{2}-\theta \right)& =\hfill & \text{cot}\phantom{\rule{0.1em}{0ex}}\theta \hfill & & & \hfill \text{tan}\left(\theta +\pi \right)& =\hfill & \text{tan}\phantom{\rule{0.1em}{0ex}}\theta \hfill \end{array}$

Law of sines

$\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}A}{a}=\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}B}{b}=\frac{\text{sin}\phantom{\rule{0.1em}{0ex}}C}{c}$

Law of cosines

$\begin{array}{ccc}\hfill {a}^{2}& =\hfill & {b}^{2}+{c}^{2}-2bc\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}A\hfill \\ \hfill {b}^{2}& =\hfill & {a}^{2}+{c}^{2}-2ac\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}B\hfill \\ \hfill {c}^{2}& =\hfill & {a}^{2}+{b}^{2}-2ab\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}C\hfill \end{array}$

Addition and subtraction formulas

$\begin{array}{ccc}\hfill \text{sin}\phantom{\rule{0.2em}{0ex}}\left(x+y\right)& =\hfill & \text{sin}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}y+\text{cos}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}y\hfill \\ \hfill \text{sin}\phantom{\rule{0.1em}{0ex}}\left(x-y\right)& =\hfill & \text{sin}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}y-\text{cos}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}y\hfill \\ \hfill \text{cos}\phantom{\rule{0.1em}{0ex}}\left(x+y\right)& =\hfill & \text{cos}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}y-\text{sin}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}y\hfill \\ \hfill \text{cos}\phantom{\rule{0.1em}{0ex}}\left(x-y\right)& =\hfill & \text{cos}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}y+\text{sin}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}y\hfill \\ \hfill \text{tan}\phantom{\rule{0.1em}{0ex}}\left(x+y\right)& =\hfill & \frac{\text{tan}\phantom{\rule{0.2em}{0ex}}x+\text{tan}y}{1-\text{tan}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{tan}y}\hfill \\ \hfill \text{tan}\left(x-y\right)& =\hfill & \frac{\text{tan}\phantom{\rule{0.2em}{0ex}}x-\text{tan}y}{1+\text{tan}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{tan}y}\hfill \end{array}$

Double-angle formulas

$\begin{array}{ccc}\hfill \text{sin}\phantom{\rule{0.2em}{0ex}}2x& =\hfill & 2\phantom{\rule{0.1em}{0ex}}\text{sin}\phantom{\rule{0.2em}{0ex}}x\phantom{\rule{0.2em}{0ex}}\text{cos}\phantom{\rule{0.2em}{0ex}}x\hfill \\ \hfill \text{cos}\phantom{\rule{0.2em}{0ex}}2x& =\hfill & {\text{cos}}^{2}x-{\text{sin}}^{2}x=2\phantom{\rule{0.1em}{0ex}}{\text{cos}}^{2}x-1=1-2\phantom{\rule{0.1em}{0ex}}{\text{sin}}^{2}x\hfill \\ \hfill \text{tan}\phantom{\rule{0.2em}{0ex}}2x& =\hfill & \frac{2\phantom{\rule{0.1em}{0ex}}\text{tan}\phantom{\rule{0.2em}{0ex}}x}{1-{\text{tan}}^{2}x}\hfill \end{array}$

Half-angle formulas

$\begin{array}{ccc}\hfill {\text{sin}}^{2}x& =\hfill & \frac{1-\text{cos}\phantom{\rule{0.2em}{0ex}}2x}{2}\hfill \\ \hfill {\text{cos}}^{2}x& =\hfill & \frac{1+\text{cos}\phantom{\rule{0.2em}{0ex}}2x}{2}\hfill \end{array}$

Questions & Answers

f(x) =3+8+4
tennesio Reply
d(x)(x)/dx =?
Abdul Reply
scope of a curve
Abraham Reply
check continuty at x=1 when f (x)={x^3 if x <1 -4-x^2 if -1 <and= x <and= 10
Raja Reply
what is the value as sinx
Sudam Reply
f (x)=x3_2x+3,a=3
Bilal Reply
given demand function & cost function. x= 6000 - 30p c= 72000 + 60x . . find the break even price & quantities.
Fiseha Reply
hi guys ....um new here ...integrate my welcome
Asif Reply
An airline sells tickets from Tokyo to Detroit for $1200. There are 500 seats available and a typical flight books 350 seats. For every$10 decrease in price, the airline observes and additional 5 seats sold. (a) What should the fare be to maximize profit? (b) How many passeners would be on board?
Ravendra Reply
I would like to know if there exists a second category of integration by substitution
CHIFUNDO Reply
nth differential cofficient of x×x/(x-1)(x-2)
Abhay Reply
integral of root of sinx cosx
Wedraj Reply
the number of gallons of water in a tank t minutes after the tank has started to drain is Q(t)=200(30-t)^2.how fast is the water running out at the end of 10 minutes?
Purity Reply
why is it that the integral of eudu =eu
Maman Reply
using L hospital rule
Abubakar Reply

Read also:

Get the best Calculus volume 1 course in your pocket!

Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

 By Anonymous User By Jordon Humphreys By