<< Chapter < Page Chapter >> Page >
  • Determine the length of a curve, y = f ( x ) , between two points.
  • Determine the length of a curve, x = g ( y ) , between two points.
  • Find the surface area of a solid of revolution.

In this section, we use definite integrals to find the arc length of a curve. We can think of arc length    as the distance you would travel if you were walking along the path of the curve. Many real-world applications involve arc length. If a rocket is launched along a parabolic path, we might want to know how far the rocket travels. Or, if a curve on a map represents a road, we might want to know how far we have to drive to reach our destination.

We begin by calculating the arc length of curves defined as functions of x , then we examine the same process for curves defined as functions of y . (The process is identical, with the roles of x and y reversed.) The techniques we use to find arc length can be extended to find the surface area of a surface of revolution, and we close the section with an examination of this concept.

Arc length of the curve y = f ( x )

In previous applications of integration, we required the function f ( x ) to be integrable, or at most continuous. However, for calculating arc length we have a more stringent requirement for f ( x ) . Here, we require f ( x ) to be differentiable, and furthermore we require its derivative, f ( x ) , to be continuous. Functions like this, which have continuous derivatives, are called smooth . (This property comes up again in later chapters.)

Let f ( x ) be a smooth function defined over [ a , b ] . We want to calculate the length of the curve from the point ( a , f ( a ) ) to the point ( b , f ( b ) ) . We start by using line segments to approximate the length of the curve. For i = 0 , 1 , 2 ,… , n , let P = { x i } be a regular partition of [ a , b ] . Then, for i = 1 , 2 ,… , n , construct a line segment from the point ( x i 1 , f ( x i 1 ) ) to the point ( x i , f ( x i ) ) . Although it might seem logical to use either horizontal or vertical line segments, we want our line segments to approximate the curve as closely as possible. [link] depicts this construct for n = 5 .

This figure is a graph in the first quadrant. The curve increases and decreases. It is divided into parts at the points a=xsub0, xsub1, xsub2, xsub3, xsub4, and xsub5=b. Also, there are line segments between the points on the curve.
We can approximate the length of a curve by adding line segments.

To help us find the length of each line segment, we look at the change in vertical distance as well as the change in horizontal distance over each interval. Because we have used a regular partition, the change in horizontal distance over each interval is given by Δ x . The change in vertical distance varies from interval to interval, though, so we use Δ y i = f ( x i ) f ( x i 1 ) to represent the change in vertical distance over the interval [ x i 1 , x i ] , as shown in [link] . Note that some (or all) Δ y i may be negative.

This figure is a graph. It is a curve above the x-axis beginning at the point f(xsubi-1). The curve ends in the first quadrant at the point f(xsubi). Between the two points on the curve is a line segment. A right triangle is formed with this line segment as the hypotenuse, a horizontal segment with length delta x, and a vertical line segment with length delta y.
A representative line segment approximates the curve over the interval [ x i 1 , x i ] .

By the Pythagorean theorem, the length of the line segment is ( Δ x ) 2 + ( Δ y i ) 2 . We can also write this as Δ x 1 + ( ( Δ y i ) / ( Δ x ) ) 2 . Now, by the Mean Value Theorem, there is a point x i * [ x i 1 , x i ] such that f ( x i * ) = ( Δ y i ) / ( Δ x ) . Then the length of the line segment is given by Δ x 1 + [ f ( x i * ) ] 2 . Adding up the lengths of all the line segments, we get

Arc Length i = 1 n 1 + [ f ( x i * ) ] 2 Δ x .

This is a Riemann sum. Taking the limit as n , we have

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask