<< Chapter < Page Chapter >> Page >
  • Determine a new value of a quantity from the old value and the amount of change.
  • Calculate the average rate of change and explain how it differs from the instantaneous rate of change.
  • Apply rates of change to displacement, velocity, and acceleration of an object moving along a straight line.
  • Predict the future population from the present value and the population growth rate.
  • Use derivatives to calculate marginal cost and revenue in a business situation.

In this section we look at some applications of the derivative by focusing on the interpretation of the derivative as the rate of change of a function. These applications include acceleration    and velocity in physics, population growth rates in biology, and marginal functions in economics.

Amount of change formula

One application for derivatives is to estimate an unknown value of a function at a point by using a known value of a function at some given point together with its rate of change at the given point. If f ( x ) is a function defined on an interval [ a , a + h ] , then the amount of change    of f ( x ) over the interval is the change in the y values of the function over that interval and is given by

f ( a + h ) f ( a ) .

The average rate of change    of the function f over that same interval is the ratio of the amount of change over that interval to the corresponding change in the x values. It is given by

f ( a + h ) f ( a ) h .

As we already know, the instantaneous rate of change of f ( x ) at a is its derivative

f ( a ) = lim h 0 f ( a + h ) f ( a ) h .

For small enough values of h , f ( a ) f ( a + h ) f ( a ) h . We can then solve for f ( a + h ) to get the amount of change formula:

f ( a + h ) f ( a ) + f ( a ) h .

We can use this formula if we know only f ( a ) and f ( a ) and wish to estimate the value of f ( a + h ) . For example, we may use the current population of a city and the rate at which it is growing to estimate its population in the near future. As we can see in [link] , we are approximating f ( a + h ) by the y coordinate at a + h on the line tangent to f ( x ) at x = a . Observe that the accuracy of this estimate depends on the value of h as well as the value of f ( a ) .

On the Cartesian coordinate plane with a and a + h marked on the x axis, the function f is graphed. It passes through (a, f(a)) and (a + h, f(a + h)). A straight line is drawn through (a, f(a)) with its slope being the derivative at that point. This straight line passes through (a + h, f(a) + f’(a)h). There is a line segment connecting (a + h, f(a + h)) and (a + h, f(a) + f’(a)h), and it is marked that this is the error in using f(a) + f’(a)h to estimate f(a + h).
The new value of a changed quantity equals the original value plus the rate of change times the interval of change: f ( a + h ) f ( a ) + f ( a ) h.

Here is an interesting demonstration of rate of change.

Estimating the value of a function

If f ( 3 ) = 2 and f ( 3 ) = 5 , estimate f ( 3.2 ) .

Begin by finding h . We have h = 3.2 3 = 0.2 . Thus,

f ( 3.2 ) = f ( 3 + 0.2 ) f ( 3 ) + ( 0.2 ) f ( 3 ) = 2 + 0.2 ( 5 ) = 3 .
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Given f ( 10 ) = −5 and f ( 10 ) = 6 , estimate f ( 10.1 ) .

−4.4

Got questions? Get instant answers now!

Motion along a line

Another use for the derivative is to analyze motion along a line. We have described velocity as the rate of change of position. If we take the derivative of the velocity, we can find the acceleration, or the rate of change of velocity. It is also important to introduce the idea of speed    , which is the magnitude of velocity. Thus, we can state the following mathematical definitions.

Definition

Let s ( t ) be a function giving the position of an object at time t .

The velocity of the object at time t is given by v ( t ) = s ( t ) .

The speed of the object at time t is given by | v ( t ) | .

The acceleration of the object at t is given by a ( t ) = v ( t ) = s ( t ) .

Questions & Answers

how does Neisseria cause meningitis
Nyibol Reply
what is microbiologist
Muhammad Reply
what is errata
Muhammad
is the branch of biology that deals with the study of microorganisms.
Ntefuni Reply
What is microbiology
Mercy Reply
studies of microbes
Louisiaste
when we takee the specimen which lumbar,spin,
Ziyad Reply
How bacteria create energy to survive?
Muhamad Reply
Bacteria doesn't produce energy they are dependent upon their substrate in case of lack of nutrients they are able to make spores which helps them to sustain in harsh environments
_Adnan
But not all bacteria make spores, l mean Eukaryotic cells have Mitochondria which acts as powerhouse for them, since bacteria don't have it, what is the substitution for it?
Muhamad
they make spores
Louisiaste
what is sporadic nd endemic, epidemic
Aminu Reply
the significance of food webs for disease transmission
Abreham
food webs brings about an infection as an individual depends on number of diseased foods or carriers dully.
Mark
explain assimilatory nitrate reduction
Esinniobiwa Reply
Assimilatory nitrate reduction is a process that occurs in some microorganisms, such as bacteria and archaea, in which nitrate (NO3-) is reduced to nitrite (NO2-), and then further reduced to ammonia (NH3).
Elkana
This process is called assimilatory nitrate reduction because the nitrogen that is produced is incorporated in the cells of microorganisms where it can be used in the synthesis of amino acids and other nitrogen products
Elkana
Examples of thermophilic organisms
Shu Reply
Give Examples of thermophilic organisms
Shu
advantages of normal Flora to the host
Micheal Reply
Prevent foreign microbes to the host
Abubakar
they provide healthier benefits to their hosts
ayesha
They are friends to host only when Host immune system is strong and become enemies when the host immune system is weakened . very bad relationship!
Mark
what is cell
faisal Reply
cell is the smallest unit of life
Fauziya
cell is the smallest unit of life
Akanni
ok
Innocent
cell is the structural and functional unit of life
Hasan
is the fundamental units of Life
Musa
what are emergency diseases
Micheal Reply
There are nothing like emergency disease but there are some common medical emergency which can occur simultaneously like Bleeding,heart attack,Breathing difficulties,severe pain heart stock.Hope you will get my point .Have a nice day ❣️
_Adnan
define infection ,prevention and control
Innocent
I think infection prevention and control is the avoidance of all things we do that gives out break of infections and promotion of health practices that promote life
Lubega
Heyy Lubega hussein where are u from?
_Adnan
en français
Adama
which site have a normal flora
ESTHER Reply
Many sites of the body have it Skin Nasal cavity Oral cavity Gastro intestinal tract
Safaa
skin
Asiina
skin,Oral,Nasal,GIt
Sadik
How can Commensal can Bacteria change into pathogen?
Sadik
How can Commensal Bacteria change into pathogen?
Sadik
all
Tesfaye
by fussion
Asiina
what are the advantages of normal Flora to the host
Micheal
what are the ways of control and prevention of nosocomial infection in the hospital
Micheal
what is inflammation
Shelly Reply
part of a tissue or an organ being wounded or bruised.
Wilfred
what term is used to name and classify microorganisms?
Micheal Reply
Binomial nomenclature
adeolu
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 8

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Calculus volume 1. OpenStax CNX. Feb 05, 2016 Download for free at http://cnx.org/content/col11964/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Calculus volume 1' conversation and receive update notifications?

Ask