<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • State the location of these reactions in the cell
  • Describe the overall outcome of the transition reaction, citric acid/Kreb's cycle and the electron transport chain/oxidative phosphorylation in terms of the products of each
  • Describe the relationships of glycolysis, transition reaction, citric acid/Kreb's cycle, and electron transport chain/oxidative phosphorylation in terms of their inputs and outputs.

The transition reaction and citric acid/kreb's cycle

In eukaryotic cells, the pyruvate molecules produced at the end of glycolysis are transported into mitochondria, which are sites of cellular respiration. If oxygen is available, aerobic respiration will go forward. In mitochondria, pyruvate will be transformed into a two-carbon acetyl group (by removing a molecule of carbon dioxide) that will be picked up by a carrier compound called coenzyme A (CoA), which is made from vitamin B. The resulting compound is called acetyl CoA    . ( [link] ). This set of reactions is referred to as the transition reaction, as it happens during pyruvate transport into the mitochondria. The major function of acetyl CoA is to deliver the acetyl group (2 carbon fragment) derived from pyruvate to the next pathway in glucose catabolism, which is the citric acid/Kreb's cycle. Note that during the transition reaction, each pyruvate/pyruvic acid molecule loses one carbon as carbon dioxide and one molecule of NADH is produced. Therefore, a total of two molecules of carbon dioxide and two molecules of NADH are produced per glucose that started glycolysis.

A graphic shows pyruvate becoming a two-carbon acetyl group by removing one molecule of carbon dioxide. The two-carbon acetyl group is picked up by coenzyme A to become acetyl CoA. The acetyl CoA then enters the citric acid cycle. Three NADH, one FADH2, one ATP, and two carbon dioxide molecules are produced during this cycle.
During the transition reaction, pyruvate is converted into acetyl-CoA before entering the citric acid/Kreb's cycle.

Like the conversion of pyruvate to acetyl CoA, the citric acid cycle    (also called the Kreb's cycle) in eukaryotic cells takes place in the matrix of the mitochondria. Unlike glycolysis, the citric acid cycle is a closed loop: The last part of the pathway regenerates the compound used in the first step. The eight steps of the cycle are a series of chemical reactions that produces two carbon dioxide molecules, one ATP molecule (or an equivalent), and reduced forms (NADH and FADH 2 ) of NAD + and FAD + , important coenzymes in the cell. Part of this is considered an aerobic pathway (oxygen-requiring) because the NADH and FADH 2 produced must transfer their electrons to the next pathway in the system, which will use oxygen. If oxygen is not present, this transfer does not occur. Note that per glucose that started glycolysis, processing of the two pyruvate/pyruvic acid molecules in the citric acid cycle will result in the production of a total of six NADH, two FADH 2 , and two ATP. Also note that at this point, a total of six molecules of carbon dioxide have been released, which accounts for the six carbons in the starting glucose molecule. The high-energy NADH and FADH 2 will be used in the last stage of aerobic respiration to produce additional ATP molecules.

Electron transport chain/oxidative phosphorylation

You have just read about two pathways in glucose catabolism—glycolysis and the citric acid cycle—that generate ATP. Most of the ATP generated during the aerobic catabolism of glucose, however, is not generated directly from these pathways. Rather, it derives from a process that begins with passing electrons through a series of chemical reactions to a final electron acceptor, oxygen. These reactions take place in specialized protein complexes located in the inner membrane of the mitochondria. The energy of the electrons is harvested and used to generate a electrochemical gradient of hydrogen ions across the inner mitochondrial membrane. The potential energy of this gradient is used to generate ATP by providing the energy to add phosphate groups to ADP molecules. The entirety of this process is called oxidative phosphorylation    , as oxygen is required as the terminal electron acceptor and phosphate groups are added to ADP molecules.

Questions & Answers

Discuss the differences between taste and flavor, including how other sensory inputs contribute to our  perception of flavor.
John Reply
taste refers to your understanding of the flavor . while flavor one The other hand is refers to sort of just a blend things.
Faith
While taste primarily relies on our taste buds, flavor involves a complex interplay between taste and aroma
Kamara
which drugs can we use for ulcers
Ummi Reply
omeprazole
Kamara
what
Renee
what is this
Renee
is a drug
Kamara
of anti-ulcer
Kamara
Omeprazole Cimetidine / Tagament For the complicated once ulcer - kit
Patrick
what is the function of lymphatic system
Nency Reply
Not really sure
Eli
to drain extracellular fluid all over the body.
asegid
The lymphatic system plays several crucial roles in the human body, functioning as a key component of the immune system and contributing to the maintenance of fluid balance. Its main functions include: 1. Immune Response: The lymphatic system produces and transports lymphocytes, which are a type of
asegid
to transport fluids fats proteins and lymphocytes to the blood stream as lymph
Adama
what is anatomy
Oyindarmola Reply
Anatomy is the identification and description of the structures of living things
Kamara
what's the difference between anatomy and physiology
Oyerinde Reply
Anatomy is the study of the structure of the body, while physiology is the study of the function of the body. Anatomy looks at the body's organs and systems, while physiology looks at how those organs and systems work together to keep the body functioning.
AI-Robot
what is enzymes all about?
Mohammed Reply
Enzymes are proteins that help speed up chemical reactions in our bodies. Enzymes are essential for digestion, liver function and much more. Too much or too little of a certain enzyme can cause health problems
Kamara
yes
Prince
how does the stomach protect itself from the damaging effects of HCl
Wulku Reply
little girl okay how does the stomach protect itself from the damaging effect of HCL
Wulku
it is because of the enzyme that the stomach produce that help the stomach from the damaging effect of HCL
Kamara
function of digestive system
Ali Reply
function of digestive
Ali
the diagram of the lungs
Adaeze Reply
what is the normal body temperature
Diya Reply
37 degrees selcius
Xolo
37°c
Stephanie
please why 37 degree selcius normal temperature
Mark
36.5
Simon
37°c
Iyogho
the normal temperature is 37°c or 98.6 °Fahrenheit is important for maintaining the homeostasis in the body the body regular this temperature through the process called thermoregulation which involves brain skin muscle and other organ working together to maintain stable internal temperature
Stephanie
37A c
Wulku
what is anaemia
Diya Reply
anaemia is the decrease in RBC count hemoglobin count and PVC count
Eniola
what is the pH of the vagina
Diya Reply
how does Lysin attack pathogens
Diya
acid
Mary
I information on anatomy position and digestive system and there enzyme
Elisha Reply
anatomy of the female external genitalia
Muhammad Reply
Organ Systems Of The Human Body (Continued) Organ Systems Of The Human Body (Continued)
Theophilus Reply
what's lochia albra
Kizito
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Human biology. OpenStax CNX. Dec 01, 2015 Download for free at http://legacy.cnx.org/content/col11903/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Human biology' conversation and receive update notifications?

Ask