<< Chapter < Page Chapter >> Page >

Phloem is the second type of vascular tissue; it transports sugars, proteins, and other solutes throughout the plant. Phloem cells are divided into sieve elements (conducting cells) and cells that support the sieve elements. Together, xylem and phloem tissues form the vascular system of plants.

Roots: support for the plant

Roots are not well preserved in the fossil record. Nevertheless, it seems that roots appeared later in evolution than vascular tissue. The development of an extensive network of roots represented a significant new feature of vascular plants. Thin rhizoids attached bryophytes to the substrate, but these rather flimsy filaments did not provide a strong anchor for the plant; neither did they absorb substantial amounts of water and nutrients. In contrast, roots, with their prominent vascular tissue system, transfer water and minerals from the soil to the rest of the plant. The extensive network of roots that penetrates deep into the soil to reach sources of water also stabilizes trees by acting as a ballast or anchor. The majority of roots establish a symbiotic relationship with fungi, forming mycorrhizae, which benefit the plant by greatly increasing the surface area for absorption of water and soil minerals and nutrients.

Leaves, sporophylls, and strobili

A third innovation marks the seedless vascular plants. Accompanying the prominence of the sporophyte and the development of vascular tissue, the appearance of true leaves improved their photosynthetic efficiency. Leaves capture more sunlight with their increased surface area by employing more chloroplasts to trap light energy and convert it to chemical energy, which is then used to fix atmospheric carbon dioxide into carbohydrates. The carbohydrates are exported to the rest of the plant by the conductive cells of phloem tissue.

The existence of two types of morphology suggests that leaves evolved independently in several groups of plants. The first type of leaf is the microphyll    , or “little leaf,” which can be dated to 350 million years ago in the late Silurian. A microphyll is small and has a simple vascular system. A single unbranched vein    —a bundle of vascular tissue made of xylem and phloem—runs through the center of the leaf. Microphylls may have originated from the flattening of lateral branches, or from sporangia that lost their reproductive capabilities. Microphylls are present in the club mosses and probably preceded the development of megaphylls , or “big leaves”, which are larger leaves with a pattern of branching veins. Megaphylls most likely appeared independently several times during the course of evolution. Their complex networks of veins suggest that several branches may have combined into a flattened organ, with the gaps between the branches being filled with photosynthetic tissue.

In addition to photosynthesis, leaves play another role in the life of the plants. Pine cones, mature fronds of ferns, and flowers are all sporophylls —leaves that were modified structurally to bear sporangia. Strobili are cone-like structures that contain sporangia. They are prominent in conifers and are commonly known as pine cones.

Questions & Answers

what is abiotic and biotic factors?
Hira Reply
which of the following shows the correct sequence of the cell cycle
Kameishia Reply
who is name virus
Shivam Reply
centromere consist of
meeting point of two chromatids
Explain the function of nematocysts in cnidarians?
Israel Reply
The nemotocyst is used by Cnidarians (hydra, jellyfish, sea anemones) to sting their prey and any threatening enemy.
photosynthesis in plants is an example of what ? (a) excretion (b) irritability (c) nutrition (d) reproduction
Lee Reply
If a Hox 13 gene in a mouse was replaced with a Hox 1 gene, how might this alter animal development?
Israel Reply
Which of the following organisms is most likely to be a diploblast?
what are reactions of photosynthesis?
Maria Reply
what are the probabilities of blood genotypes for the offspring from a cross between a mother lAlA blood and a father with lBi blood?
dayana Reply
what is matter
Emmanuel Reply
matter is anything that has mass and can occupied space
example of matter
You serves as an example of matter Because matter is anything that has mass and occupy space e.g man and every other things that exist on earth.. So think of every other things around you ...
and you too
We generally
What is ecological management
how the kidney functions as osmoregulatory organ
Sam Reply
That true
what is the major connection for sugars in glycolysis?
Ibrahim Reply
Simple term of science
Palesa Reply
what does it mean
it's means what do u know about biology?
what is immunisation
the action of making a person immune to infections ,for immunisation
what is the biology? what do you know about biology
Phathu Reply
biology is the study of living organisms, divided into many specialized fields that cover their morphology, physiology, anatomy, behavior, origin, and distribution.
The study of all aspects of life. The study of all living organisms (such as animal cells and plant cells) in greater detail (their structure and how they function). It's a very broad science.
what is prokaryotic
Bhaskar Reply
what is pathogens
pathogens are a bacterium, virus, or other microorganism that can cause disease.
transistion metals....
Wasik Reply

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?