<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Understand the fluid mosaic model of membranes
  • Describe the functions of phospholipids, proteins, and carbohydrates in membranes

A cell’s plasma membrane defines the boundary of the cell and determines the nature of its contact with the environment. Cells exclude some substances, take in others, and excrete still others, all in controlled quantities. Plasma membranes enclose the borders of cells, but rather than being a static bag, they are dynamic and constantly in flux. The plasma membrane must be sufficiently flexible to allow certain cells, such as red blood cells and white blood cells, to change shape as they pass through narrow capillaries. These are the more obvious functions of a plasma membrane. In addition, the surface of the plasma membrane carries markers that allow cells to recognize one another, which is vital as tissues and organs form during early development, and which later plays a role in the “self” versus “non-self” distinction of the immune response.

The plasma membrane also carries receptors, which are attachment sites for specific substances that interact with the cell. Each receptor is structured to bind with a specific substance. For example, surface receptors of the membrane create changes in the interior, such as changes in enzymes of metabolic pathways. These metabolic pathways might be vital for providing the cell with energy, making specific substances for the cell, or breaking down cellular waste or toxins for disposal. Receptors on the plasma membrane’s exterior surface interact with hormones or neurotransmitters, and allow their messages to be transmitted into the cell. Some recognition sites are used by viruses as attachment points. Although they are highly specific, pathogens like viruses may evolve to exploit receptors to gain entry to a cell by mimicking the specific substance that the receptor is meant to bind. This specificity helps to explain why human immunodeficiency virus (HIV) or any of the five types of hepatitis viruses invade only specific cells.

Fluid mosaic model

In 1972, S. J. Singer and Garth L. Nicolson proposed a new model of the plasma membrane that, compared to earlier understanding, better explained both microscopic observations and the function of the plasma membrane. This was called the fluid mosaic model    . The model has evolved somewhat over time, but still best accounts for the structure and functions of the plasma membrane as we now understand them. The fluid mosaic model describes the structure of the plasma membrane as a mosaic of components—including phospholipids, cholesterol, proteins, and carbohydrates—in which the components are able to flow and change position, while maintaining the basic integrity of the membrane. Both phospholipid molecules and embedded proteins are able to diffuse rapidly and laterally in the membrane. The fluidity of the plasma membrane is necessary for the activities of certain enzymes and transport molecules within the membrane. Plasma membranes range from 5–10 nm thick. As a comparison, human red blood cells, visible via light microscopy, are approximately 8 µm thick, or approximately 1,000 times thicker than a plasma membrane. ( [link] )

Questions & Answers

explain why a fresh water fish excrete ammonia
Leonard Reply
plz answer my question
Leonard
What are eukaryotic cells?
Nwosueke Reply
where does the cell get energy for active transport processes?
A'Kaysion Reply
what is synapsis
Adepoju Reply
how many turns are required to make a molecule of sucrose in Calvin cycle
Amina Reply
why Calvin cycle occurs in stroma
Amina
why do humans enhale oxygen and exhale carbondioxide?
Maryam Reply
why do humans enhale oxygen and exhale carbondioxide? For the purpose of breaking down the food
dil
what is allele
uzoka Reply
process of protein synthesis
SANTOSH Reply
what is cell
Zulf Reply
a cell is a smallest basic, structural and functional unit of life that is capable of self replication
Lucas
why does a fresh water fish excrete ammonia
Leonard
plz answer my question
Leonard
Ammonia is a toxic colorless gas and when its inside the fish biological system is converted to a less toxic compound then excreted in the form of urea. However too much ammonia will kill the fish " Ammonia Poisoning " which is a very common disease among fish.
This
what is cytoplasm
uzoka Reply
cytoplasm is fluid of cell.
Deepak
how many major types of Cloning
Saeed Reply
two
amir
two
Zulf
comparative anatomy of gymnosperms?
Meenakshi Reply
anatomy of gymnosperms
Meenakshi
how genes are regulated
Ainjue Reply
what is storage of glycogen
Student Reply
glycogen is a protein content
Najeem
how many times breathing a day normally does a person have
Vernalyn Reply
100
Aadil
on average 18000 times a day when resting.
gagan

Get the best Concepts of biology course in your pocket!





Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask