<< Chapter < Page Chapter >> Page >

Pedagogical foundation and features

Biology is grounded on a solid scientific base and designed to help students understand the concepts at hand. Throughout the text, one can explore features that engage the students in scientific inquiry by taking selected topics a step further. Our features include:

  • Evolution Connection features uphold the importance of evolution to all biological study through discussions like “The Evolution of Metabolic Pathways” and “Algae and Evolutionary Paths to Photosynthesis.”
  • Scientific Method Connection call-outs walk students through actual or thought experiments that elucidate the steps of the scientific process as applied to the topic. Features include “Determining the Time Spent in Cell Cycle Stages” and “Testing the Hypothesis of Independent Assortment.”
  • Career Connection features present information on a variety of careers in the biological sciences, introducing students to the educational requirements and day-to-day work life of a variety of professions, such as microbiologist, ecologist, neurologist, and forensic scientist.
  • Everyday Connection features tie biological concepts to emerging issues and discuss science in terms of everyday life. Topics include “Chesapeake Bay” and “Can Snail Venom Be Used as a Pharmacological Pain Killer?”

Art and animations that engage

Our art program takes a straightforward approach designed to help students learn the concepts of biology through simple, effective illustrations, photos, and micrographs. Biology also incorporates links to relevant animations and interactive exercises that help bring biology to life for students.

  • Art Connection features call out core figures in each chapter for student study. Questions about key figures, including clicker questions that can be used in the classroom, engage students’ critical thinking and analytical abilities to ensure their genuine understanding.
  • Link to Learning features direct students to online interactive exercises and animations to add a fuller context and examples to core content.

About our team

Biology would not be possible if not for the tremendous contributions of the authors and community reviewing team.

Senior contributing authors

Yael Avissar Rhode Island College Cell Biology
Jung Choi Georgia Institute of Technology Genetics
Jean DeSaix University of North Carolina at Chapel Hill Evolution
Vladimir Jurukovski Suffolk County Community College Animal Physiology
Robert Wise University of Wisconsin, Oshkosh Plant Biology
Connie Rye east Mississippi Community College General Content Lead

Contributing authors and reviewers

Julie Adams Aurora University
Summer Allen Brown University
James Bader Case Western Reserve University
David Bailey St. Norbert College
Mark Belk Brigham Young University
Nancy Boury Iowa State University
Lisa Bonneau Metropolitan Community College - Blue River
Graciela Brelles-Marino California State University Pomona
Mark Browning Purdue University
Sue Chaplin University of St. Thomas
George Cline Jacksonville State University
Deb Cook Georgia Gwinnett College
Diane Day Clayton State University
Frank Dirrigl The University of Texas - Pan American
Waneene Dorsey Grambling State University
Nick Downey University of Wisconsin La Crosse
Rick Duhrkopf Baylor University
Kristy Duran Adams State University
Stan Eisen Christian Brothers University
Brent Ewers University of Wyoming
Myriam Feldman Lake Washington Institute of Technology
Michael Fine Virginia Commonwealth University
Linda Flora Delaware County Community College
Thomas Freeland Walsh University
David Grisé Texas A&M University - Corpus Christi
Andrea Hazard SUNY Cortland
Michael Hedrick University of North Texas
Linda Hensel Mercer University
Mark Kopeny University of Virginia
Norman Johnson University of Massachusetts - Amherst
Grace Lasker Lake Washington Institute of Technology; Walden University
Sandy Latourelle SUNY Plattsburgh
Theo Light Shippensburg University
Clark Lindgren Grinnell College
James Malcolm University of Redlands
Mark Meade Jacksonville State University
Richard Merritt Houston Community College
James Mickle North Carolina State University
Jasleen Mishra Houston Community College
Dudley Moon Albany College of Pharmacy and Health Sciences
Shobhana Natarajan Brookhaven College
Jonas Okeagu Fayetteville State University
Diana Oliveras University of Colorado Boulder
John Peters College of Charleston
Joel Piperberg Millersville University
Johanna Porter-Kelley Winston-Salem State university
Robyn Puffenbarger Bridgewater College
Dennis Revie California Lutheran University
Ann Rushing Baylor University
Sangha Saha City College of Chicago
Edward Saiff Ramapo College of New Jersey
Brian Shmaefsky Lone Star College System
Robert Sizemore Alcorn State University
Marc Smith Sinclair Community College
Frederick Spiegel University of Arkansas
Frederick Sproull La Roche College
Bob Sullivan Marist College
Mark Sutherland Hendrix College
Toure Thompson Alabama A&M University
Scott Thomson University of Wisconsin - Parkside
Allison van de Meene University of Melbourne
Mary White Southeastern Louisiana University
Steven Wilt Bellarmine University
James Wise Hampton University
Renna Wolfe
Virginia Young Mercer University
Leslie Zeman University of Washington
Daniel Zurek Pittsburg State University
Shobhana Natarajan Alcon Laboratories, Inc.

Learning resources

  • Wiley Plus for Biology-Fall 2013 Pilot
    WileyPLUS provides an engaging online environment for effective teaching and learning. WileyPLUS builds students’ confidence because it takes the guesswork out of studying by providing a clear roadmap; what to do, how to do it, and if they did it right. With WileyPLUS, students take more initiative. Therefore, the course has a greater impact on their learning experience. Adaptive tools provide students with a personal, adaptive learning experience so they can build their proficiency on topics and use their study time most effectively. Please let us know if you would like to participate in a Fall 2013 Pilot.
  • Biology Powerpoint Slides (faculty only)
    The PowerPoint slides are based on the extensive illustrations from Biology. They can be edited, incorporated into lecture notes, and you are free to share with anyone in the community. This is a restricted item requiring faculty registration. NOTE: This file is very large and may take some time to download.
  • SimBio (Laboratory)
    SimBio’s interactive modules (virtual labs and interactive tutorials and chapters) provide engaging, discovery-based learning tools that complement many of the chapters of Biology. SimBio is best known for their EcoBeaker® and EvoBeaker® suites of simulated ecology and evolution laboratories that guide students through the “discovery” of important concepts via a mix of structured and open-ended experimentation on simulated systems. In response to popular demand, SimBio has begun applying the same powerful approaches to topics in cell biology, genetics, and neurobiology. All of SimBio’s modules include instant-feedback questions that enhance student comprehension and auto-graded questions that facilitate implementation.

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask