<< Chapter < Page Chapter >> Page >

During phase three, or orgasm, rhythmic, involuntary contractions of muscles occur in both sexes. In the male, the reproductive accessory glands and tubules constrict placing semen in the urethra, then the urethra contracts expelling the semen through the penis. In women, the uterus and vaginal muscles contract in waves that may last slightly less than a second each. During phase four, or resolution, the processes described in the first three phases reverse themselves and return to their normal state. Men experience a refractory period in which they cannot maintain an erection or ejaculate for a period of time ranging from minutes to hours.

Gametogenesis (spermatogenesis and oogenesis)

Gametogenesis, the production of sperm and eggs, takes place through the process of meiosis. During meiosis, two cell divisions separate the paired chromosomes in the nucleus and then separate the chromatids that were made during an earlier stage of the cell’s life cycle. Meiosis produces haploid cells with half of each pair of chromosomes normally found in diploid cells. The production of sperm is called spermatogenesis    and the production of eggs is called oogenesis    .

Spermatogenesis

 Spermatogenesis begins when the 2n spermatogonium undergoes mitosis, producing more spermatagonia. The spermatogonia undergo meiosis I, producing haploid (1n) secondary spermatocytes, and meiosis II, producing spermatids. Differentiation of the spermatids results in mature sperm.
During spermatogenesis, four sperm result from each primary spermatocyte.

Spermatogenesis, illustrated in [link] , occurs in the wall of the seminiferous tubules ( [link] ), with stem cells at the periphery of the tube and the spermatozoa at the lumen of the tube. Immediately under the capsule of the tubule are diploid, undifferentiated cells. These stem cells, called spermatogonia (singular: spermatagonium), go through mitosis with one offspring going on to differentiate into a sperm cell and the other giving rise to the next generation of sperm.

Meiosis starts with a cell called a primary spermatocyte. At the end of the first meiotic division, a haploid cell is produced called a secondary spermatocyte. This cell is haploid and must go through another meiotic cell division. The cell produced at the end of meiosis is called a spermatid and when it reaches the lumen of the tubule and grows a flagellum, it is called a sperm cell. Four sperm result from each primary spermatocyte that goes through meiosis.

Stem cells are deposited during gestation and are present at birth through the beginning of adolescence, but in an inactive state. During adolescence, gonadotropic hormones from the anterior pituitary cause the activation of these cells and the production of viable sperm. This continues into old age.

Visit this site to see the process of spermatogenesis.

Oogenesis

Oogenesis, illustrated in [link] , occurs in the outermost layers of the ovaries. As with sperm production, oogenesis starts with a germ cell, called an oogonium (plural: oogonia), but this cell undergoes mitosis to increase in number, eventually resulting in up to about one to two million cells in the embryo.

Oogenesis begins when the 2n oogonium undergoes mitosis, producing a primary oocyte. The primary oocytes arrest in prophase I before birth. After puberty, meiosis of one oocyte per menstrual cycle continues, resulting in a 1n secondary oocyte that arrests in metaphase II and a polar body. Upon ovulation and sperm entry, meiosis is completed and fertilization occurs, resulting in a polar body and a fertilized egg.
The process of oogenesis occurs in the ovary’s outermost layer.

The cell starting meiosis is called a primary oocyte, as shown in [link] . This cell will start the first meiotic division and be arrested in its progress in the first prophase stage. At the time of birth, all future eggs are in the prophase stage. At adolescence, anterior pituitary hormones cause the development of a number of follicles in an ovary. This results in the primary oocyte finishing the first meiotic division. The cell divides unequally, with most of the cellular material and organelles going to one cell, called a secondary oocyte, and only one set of chromosomes and a small amount of cytoplasm going to the other cell. This second cell is called a polar body and usually dies. A secondary meiotic arrest occurs, this time at the metaphase II stage. At ovulation, this secondary oocyte will be released and travel toward the uterus through the oviduct. If the secondary oocyte is fertilized, the cell continues through the meiosis II, producing a second polar body and a fertilized egg containing all 46 chromosomes of a human being, half of them coming from the sperm.

Egg production begins before birth, is arrested during meiosis until puberty, and then individual cells continue through at each menstrual cycle. One egg is produced from each meiotic process, with the extra chromosomes and chromatids going into polar bodies that degenerate and are reabsorbed by the body.

Section summary

As animals became more complex, specific organs and organ systems developed to support specific functions for the organism. The reproductive structures that evolved in land animals allow males and females to mate, fertilize internally, and support the growth and development of offspring. Processes developed to produce reproductive cells that had exactly half the number of chromosomes of each parent so that new combinations would have the appropriate amount of genetic material. Gametogenesis, the production of sperm (spermatogenesis) and eggs (oogenesis), takes place through the process of meiosis.

[link] Which of the following statements about the male reproductive system is false?

  1. The vas deferens carries sperm from the testes to the penis.
  2. Sperm mature in seminiferous tubules in the testes.
  3. Both the prostate and the bulbourethral glands produce components of the semen.
  4. The prostate gland is located in the testes.

[link] D

Got questions? Get instant answers now!

Questions & Answers

what is photosynthesis
Victor Reply
The process plants use to convert sunlight into food (energy).
juanita
Some other organisms use
juanita
types of photosynthesis
Victor
ps1 and ps2
smritilekha
what is used to determine phylogeny?
Israel Reply
which condition is the basis for a species to be reproductively isolated from other members?
Israel Reply
Why do scientists consider vestigial structures evidence for evolution?
Israel
8.Which statement about analogies is correct?
Israel
What is true about organisms that are a part of the same clade?
Israel
Why is it so important for scientists to distinguish between homologous and analogous characteristics before building phylogenetic trees?
Israel
(CH2O)n is the stoichiometric formula of
Marcellus Reply
what are nucleotide
Anastijjaninaiya Reply
Methane,ammonia,water and sugar are dissolved to form nuceotide
Me
Introduction To Biology
Tanveer Reply
can ringworm be caused by bacterium
fred Reply
Nope
ejikeme
Branches of biology
Tanveer
no it does not occurs by bacterium
gopal
what is a brick?
Istifanus Reply
what is gene in biology?
yousaf Reply
it is a heredity unit
Me
what is DNA
yousaf Reply
carrier of genetic information
missy
deoxyribonucleic acid
gopal
it contains genetic information and brings it to one generation to other
gopal
it is of two Types circular DNA and linear DNA
gopal
plasmids are the type of small circular DNA which lies outside the genomic DNA
gopal
And what makes a virus to be difficult to destroy
Mosongo
what observation is made when dry seeds and soaked seeds are put in a vacuum flask
Robin Reply
there is respiration from the soak seeds which shows on the walls of the vacuum flask
Israel
what's mammals ?
Istifanus Reply
mammals are vertebrates ,any member group of vertebrates animals in which the young are nourished with milk from special mammary glands of the mother.
yousaf
what are actin and myosin
Praveen Reply
they are muscle filaments
Israel
they make up the microfibrils of the muscle ,relaxing and contracting to cause movement
Israel
Please did anybody know the questions that will come out in the coming practical?
Oladimeji
Why it is importantthat there are different types of protein in plasma membraine for the transport materials into and out of a cell?
Louellie Reply
the nerve cell
Mustapha Reply

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask