<< Chapter < Page Chapter >> Page >
This photo shows deer running through tall grass at the edge of a forest.
The energy stored in carbohydrate molecules from photosynthesis passes through the food chain. The predator that eats these deer is getting energy that originated in the photosynthetic vegetation that the deer consumed. (credit: Steve VanRiper, U.S. Fish and Wildlife Service)

Biology in action

Photosynthesis at the grocery store

This photo shows people shopping in a grocery store
Photosynthesis is the origin of the products that comprise the main elements of the human diet. (credit: Associação Brasileira de Supermercados)

Major grocery stores in the United States are organized into departments, such as dairy, meats, produce, bread, cereals, and so forth. Each aisle contains hundreds, if not thousands, of different products for customers to buy and consume ( [link] ).

Although there is a large variety, each item links back to photosynthesis. Meats and dairy products link to photosynthesis because the animals were fed plant-based foods. The breads, cereals, and pastas come largely from grains, which are the seeds of photosynthetic plants. What about desserts and drinks? All of these products contain sugar—the basic carbohydrate molecule produced directly from photosynthesis. The photosynthesis connection applies to every meal and every food a person consumes.

Main structures and summary of photosynthesis

Photosynthesis requires sunlight, carbon dioxide, and water as starting reactants ( [link] ). After the process is complete, photosynthesis releases oxygen and produces carbohydrate molecules, most commonly glucose. These sugar molecules contain the energy that living things need to survive.

This photo shows a tree. Arrows indicate that the tree uses carbon dioxide, water, and sunlight to make sugars and release oxygen.
Photosynthesis uses solar energy, carbon dioxide, and water to release oxygen and to produce energy-storing sugar molecules.

The complex reactions of photosynthesis can be summarized by the chemical equation shown in [link] .

The photosynthesis equation is shown. According to this equation, six carbon dioxide molecules and six water molecules produce one sugar molecule and one oxygen molecule. The sugar molecule is made of 6 carbons, 12 hydrogens, and 6 oxygens. Sunlight is used as an energy source.
The process of photosynthesis can be represented by an equation, wherein carbon dioxide and water produce sugar and oxygen using energy from sunlight.

Although the equation looks simple, the many steps that take place during photosynthesis are actually quite complex, as in the way that the reaction summarizing cellular respiration represented many individual reactions. Before learning the details of how photoautotrophs turn sunlight into food, it is important to become familiar with the physical structures involved.

In plants, photosynthesis takes place primarily in leaves, which consist of many layers of cells and have differentiated top and bottom sides. The process of photosynthesis occurs not on the surface layers of the leaf, but rather in a middle layer called the mesophyll    ( [link] ). The gas exchange of carbon dioxide and oxygen occurs through small, regulated openings called stomata .

In all autotrophic eukaryotes, photosynthesis takes place inside an organelle called a chloroplast    . In plants, chloroplast-containing cells exist in the mesophyll. Chloroplasts have a double (inner and outer) membrane. Within the chloroplast is a third membrane that forms stacked, disc-shaped structures called thylakoids . Embedded in the thylakoid membrane are molecules of chlorophyll    , a pigment    (a molecule that absorbs light) through which the entire process of photosynthesis begins. Chlorophyll is responsible for the green color of plants. The thylakoid membrane encloses an internal space called the thylakoid space. Other types of pigments are also involved in photosynthesis, but chlorophyll is by far the most important. As shown in [link] , a stack of thylakoids is called a granum    , and the space surrounding the granum is called stroma    (not to be confused with stomata, the openings on the leaves).

Art connection

The upper part of this illustration shows a leaf cross-section. In the cross-section, the mesophyll is sandwiched between an upper epidermis and a lower epidermis. The mesophyll has an upper part with rectangular cells aligned in a row, and a lower part with oval-shaped cells. An opening called a stomata exists in the lower epidermis. The middle part of this illustration shows a plant cell with a prominent central vacuole, a nucleus, ribosomes, mitochondria, and chloroplasts. The lower part of this illustration shows the chloroplast, which has pancake-like stacks of membranes inside.
Not all cells of a leaf carry out photosynthesis. Cells within the middle layer of a leaf have chloroplasts, which contain the photosynthetic apparatus. (credit "leaf": modification of work by Cory Zanker)

On a hot, dry day, plants close their stomata to conserve water. What impact will this have on photosynthesis?

The two parts of photosynthesis

Photosynthesis takes place in two stages: the light-dependent reactions and the Calvin cycle. In the light-dependent reactions , which take place at the thylakoid membrane, chlorophyll absorbs energy from sunlight and then converts it into chemical energy with the use of water. The light-dependent reactions release oxygen from the hydrolysis of water as a byproduct. In the Calvin cycle, which takes place in the stroma, the chemical energy derived from the light-dependent reactions drives both the capture of carbon in carbon dioxide molecules and the subsequent assembly of sugar molecules. The two reactions use carrier molecules to transport the energy from one to the other. The carriers that move energy from the light-dependent reactions to the Calvin cycle reactions can be thought of as “full” because they bring energy. After the energy is released, the “empty” energy carriers return to the light-dependent reactions to obtain more energy.

Section summary

The process of photosynthesis transformed life on earth. By harnessing energy from the sun, photosynthesis allowed living things to access enormous amounts of energy. Because of photosynthesis, living things gained access to sufficient energy, allowing them to evolve new structures and achieve the biodiversity that is evident today.

Only certain organisms, called autotrophs, can perform photosynthesis; they require the presence of chlorophyll, a specialized pigment that can absorb light and convert light energy into chemical energy. Photosynthesis uses carbon dioxide and water to assemble carbohydrate molecules (usually glucose) and releases oxygen into the air. Eukaryotic autotrophs, such as plants and algae, have organelles called chloroplasts in which photosynthesis takes place.

Art connections

[link] On a hot, dry day, plants close their stomata to conserve water. What impact will this have on photosynthesis?

[link] Levels of carbon dioxide (a reactant) will fall, and levels of oxygen (a product) will rise. As a result, the rate of photosynthesis will slow down.

Got questions? Get instant answers now!

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Concepts of biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11487/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Concepts of biology' conversation and receive update notifications?

Ask