<< Chapter < Page Chapter >> Page >

The RQ is used to calculate the partial pressure of oxygen in the alveolar spaces within the lung, the alveolar P O 2    Above, the partial pressure of oxygen in the lungs was calculated to be 150 mm Hg. However, lungs never fully deflate with an exhalation; therefore, the inspired air mixes with this residual air and lowers the partial pressure of oxygen within the alveoli. This means that there is a lower concentration of oxygen in the lungs than is found in the air outside the body. Knowing the RQ, the partial pressure of oxygen in the alveoli can be calculated:

alveolar P O 2 = inspired P O 2 − ( alveolar  P O 2 RQ )

With an RQ of 0.8 and a P CO 2 in the alveoli of 40 mm Hg, the alveolar P O 2 is equal to:

alveolar P O 2  = 150 mm Hg − ( 40 mm Hg 0 .8 ) = mm Hg .

Notice that this pressure is less than the external air. Therefore, the oxygen will flow from the inspired air in the lung ( P O 2 = 150 mm Hg) into the bloodstream ( P O 2 = 100 mm Hg) ( [link] ).

In the lungs, oxygen diffuses out of the alveoli and into the capillaries surrounding the alveoli. Oxygen (about 98 percent) binds reversibly to the respiratory pigment hemoglobin found in red blood cells (RBCs). RBCs carry oxygen to the tissues where oxygen dissociates from the hemoglobin and diffuses into the cells of the tissues. More specifically, alveolar P O 2 is higher in the alveoli ( P ALVO 2 = 100 mm Hg) than blood P O 2 (40 mm Hg) in the capillaries. Because this pressure gradient exists, oxygen diffuses down its pressure gradient, moving out of the alveoli and entering the blood of the capillaries where O 2 binds to hemoglobin. At the same time, alveolar P CO 2 is lower P ALVO 2 = 40 mm Hg than blood P CO 2 = (45 mm Hg). CO 2 diffuses down its pressure gradient, moving out of the capillaries and entering the alveoli.

Oxygen and carbon dioxide move independently of each other; they diffuse down their own pressure gradients. As blood leaves the lungs through the pulmonary veins, the venous P O 2    = 100 mm Hg, whereas the venous P CO 2    = 40 mm Hg. As blood enters the systemic capillaries, the blood will lose oxygen and gain carbon dioxide because of the pressure difference of the tissues and blood. In systemic capillaries, P O 2 = 100 mm Hg, but in the tissue cells, P O 2 = 40 mm Hg. This pressure gradient drives the diffusion of oxygen out of the capillaries and into the tissue cells. At the same time, blood P CO 2 = 40 mm Hg and systemic tissue P CO 2 = 45 mm Hg. The pressure gradient drives CO 2 out of tissue cells and into the capillaries. The blood returning to the lungs through the pulmonary arteries has a venous P O 2 = 40 mm Hg and a P CO 2 = 45 mm Hg. The blood enters the lung capillaries where the process of exchanging gases between the capillaries and alveoli begins again ( [link] ).

Art connection

The illustration shows the movement of deoxygenated air into the lungs, and oxygenated air out of the lungs. Also shown is the circulation of blood through the body. Circulation begins when deoxygenated blood in arteries leaves the right side of the heart and enters the lungs. Oxygenated blood exits the lungs, and enters the left side of the heart, which pumps it to the rest of the body via arteries. The partial pressure of oxygen in the atmosphere is 160 millimeters of mercury, and the partial pressure of carbon dioxide is 0.2 millimeters of mercury. The partial pressure of oxygen in the arteries is 100 millimeters of mercury, and the partial pressure of carbon dioxide is 40 millimeters of mercury. The partial pressure of oxygen in the veins is 40 millimeters of mercury, and the partial pressure of carbon dioxide is 46 millimeters of mercury.
The partial pressures of oxygen and carbon dioxide change as blood moves through the body.

Which of the following statements is false?

  1. In the tissues, P O 2 drops as blood passes from the arteries to the veins, while P CO 2 increases.
  2. Blood travels from the lungs to the heart to body tissues, then back to the heart, then the lungs.
  3. Blood travels from the lungs to the heart to body tissues, then back to the lungs, then the heart.
  4. P O 2 is higher in air than in the lungs.

In short, the change in partial pressure from the alveoli to the capillaries drives the oxygen into the tissues and the carbon dioxide into the blood from the tissues. The blood is then transported to the lungs where differences in pressure in the alveoli result in the movement of carbon dioxide out of the blood into the lungs, and oxygen into the blood.

Watch this video to learn how to carry out spirometry.

Section summary

The lungs can hold a large volume of air, but they are not usually filled to maximal capacity. Lung volume measurements include tidal volume, expiratory reserve volume, inspiratory reserve volume, and residual volume. The sum of these equals the total lung capacity. Gas movement into or out of the lungs is dependent on the pressure of the gas. Air is a mixture of gases; therefore, the partial pressure of each gas can be calculated to determine how the gas will flow in the lung. The difference between the partial pressure of the gas in the air drives oxygen into the tissues and carbon dioxide out of the body.

Art connections

[link] Which of the following statements is false?

  1. In the tissues, P O 2 drops as blood passes from the arteries to the veins, while P CO 2 increases.
  2. Blood travels from the lungs to the heart to body tissues, then back to the heart, then the lungs.
  3. Blood travels from the lungs to the heart to body tissues, then back to the lungs, then the heart.
  4. P O 2 is higher in air than in the lungs.

[link] C

Got questions? Get instant answers now!

Questions & Answers

what is used to determine phylogeny?
Israel Reply
which condition is the basis for a species to be reproductively isolated from other members?
Israel Reply
Why do scientists consider vestigial structures evidence for evolution?
Israel
8.Which statement about analogies is correct?
Israel
What is true about organisms that are a part of the same clade?
Israel
Why is it so important for scientists to distinguish between homologous and analogous characteristics before building phylogenetic trees?
Israel
(CH2O)n is the stoichiometric formula of
Marcellus Reply
what are nucleotide
Anastijjaninaiya Reply
Methane,ammonia,water and sugar are dissolved to form nuceotide
Me
Introduction To Biology
Tanveer Reply
can ringworm be caused by bacterium
fred Reply
Nope
ejikeme
Branches of biology
Tanveer
no it does not occurs by bacterium
gopal
what is a brick?
Istifanus Reply
what is gene in biology?
yousaf Reply
it is a heredity unit
Me
what is DNA
yousaf Reply
carrier of genetic information
missy
deoxyribonucleic acid
gopal
it contains genetic information and brings it to one generation to other
gopal
it is of two Types circular DNA and linear DNA
gopal
plasmids are the type of small circular DNA which lies outside the genomic DNA
gopal
And what makes a virus to be difficult to destroy
Mosongo
what observation is made when dry seeds and soaked seeds are put in a vacuum flask
Robin Reply
there is respiration from the soak seeds which shows on the walls of the vacuum flask
Israel
what's mammals ?
Istifanus Reply
mammals are vertebrates ,any member group of vertebrates animals in which the young are nourished with milk from special mammary glands of the mother.
yousaf
what are actin and myosin
Praveen Reply
they are muscle filaments
Israel
they make up the microfibrils of the muscle ,relaxing and contracting to cause movement
Israel
Please did anybody know the questions that will come out in the coming practical?
Oladimeji
Why it is importantthat there are different types of protein in plasma membraine for the transport materials into and out of a cell?
Louellie Reply
the nerve cell
Mustapha Reply
differences between Homo sapiens and other primates
Aphiwe Reply
Why is albinism a recessive trait
Bright
Tyrosinase gene are make albinism to recessive trait
vinod
And what are the Tyrosinase genes
Bright

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask