<< Chapter < Page Chapter >> Page >

The crossover events are the first source of genetic variation in the nuclei produced by meiosis. A single crossover event between homologous non-sister chromatids leads to a reciprocal exchange of equivalent DNA between a maternal chromosome and a paternal chromosome. Now, when that sister chromatid is moved into a gamete cell it will carry some DNA from one parent of the individual and some DNA from the other parent. The sister recombinant chromatid has a combination of maternal and paternal genes that did not exist before the crossover. Multiple crossovers in an arm of the chromosome have the same effect, exchanging segments of DNA to create recombinant chromosomes.

This illustration shows a pair of homologous chromosomes that are aligned. The ends of two non-sister chromatids of the homologous chromosomes cross over, and genetic material is exchanged. The non-sister chromatids between which genetic material was exchanged are called recombinant chromosomes. The other pair of non-sister chromatids that did not exchange genetic material are called non-recombinant chromosomes.
Crossover occurs between non-sister chromatids of homologous chromosomes. The result is an exchange of genetic material between homologous chromosomes.

Prometaphase i

The key event in prometaphase I is the attachment of the spindle fiber microtubules to the kinetochore proteins at the centromeres. Kinetochore proteins are multiprotein complexes that bind the centromeres of a chromosome to the microtubules of the mitotic spindle. Microtubules grow from centrosomes placed at opposite poles of the cell. The microtubules move toward the middle of the cell and attach to one of the two fused homologous chromosomes. The microtubules attach at each chromosomes' kinetochores. With each member of the homologous pair attached to opposite poles of the cell, in the next phase, the microtubules can pull the homologous pair apart. A spindle fiber that has attached to a kinetochore is called a kinetochore microtubule. At the end of prometaphase I, each tetrad is attached to microtubules from both poles, with one homologous chromosome facing each pole. The homologous chromosomes are still held together at chiasmata. In addition, the nuclear membrane has broken down entirely.

Metaphase i

During metaphase I, the homologous chromosomes are arranged in the center of the cell with the kinetochores facing opposite poles. The homologous pairs orient themselves randomly at the equator. For example, if the two homologous members of chromosome 1 are labeled a and b, then the chromosomes could line up a-b, or b-a. This is important in determining the genes carried by a gamete, as each will only receive one of the two homologous chromosomes. Recall that homologous chromosomes are not identical. They contain slight differences in their genetic information, causing each gamete to have a unique genetic makeup.

This randomness is the physical basis for the creation of the second form of genetic variation in offspring. Consider that the homologous chromosomes of a sexually reproducing organism are originally inherited as two separate sets, one from each parent. Using humans as an example, one set of 23 chromosomes is present in the egg donated by the mother. The father provides the other set of 23 chromosomes in the sperm that fertilizes the egg. Every cell of the multicellular offspring has copies of the original two sets of homologous chromosomes. In prophase I of meiosis, the homologous chromosomes form the tetrads. In metaphase I, these pairs line up at the midway point between the two poles of the cell to form the metaphase plate. Because there is an equal chance that a microtubule fiber will encounter a maternally or paternally inherited chromosome, the arrangement of the tetrads at the metaphase plate is random. Any maternally inherited chromosome may face either pole. Any paternally inherited chromosome may also face either pole. The orientation of each tetrad is independent of the orientation of the other 22 tetrads.

Questions & Answers

what is biology
Siyanbola Reply
what is abiotic and biotic factors?
Hira Reply
which of the following shows the correct sequence of the cell cycle
Kameishia Reply
who is name virus
Shivam Reply
centromere consist of
Shivam
meeting point of two chromatids
Cffrrcvccgg
Explain the function of nematocysts in cnidarians?
Israel Reply
The nemotocyst is used by Cnidarians (hydra, jellyfish, sea anemones) to sting their prey and any threatening enemy.
Lee
photosynthesis in plants is an example of what ? (a) excretion (b) irritability (c) nutrition (d) reproduction
Lee Reply
If a Hox 13 gene in a mouse was replaced with a Hox 1 gene, how might this alter animal development?
Israel Reply
Which of the following organisms is most likely to be a diploblast?
Israel
what are reactions of photosynthesis?
Maria Reply
what are the probabilities of blood genotypes for the offspring from a cross between a mother lAlA blood and a father with lBi blood?
dayana Reply
what is matter
Emmanuel Reply
matter is anything that has mass and can occupied space
Alice
weight
Alice
example of matter
Oyekemi
You serves as an example of matter Because matter is anything that has mass and occupy space e.g man and every other things that exist on earth.. So think of every other things around you ...
Biola
and you too
Oyekemi
We generally
Biola
What is ecological management
Oyekemi
how the kidney functions as osmoregulatory organ
Sam Reply
That true
Banda
what is the major connection for sugars in glycolysis?
Ibrahim Reply
Simple term of science
Palesa Reply
what does it mean
gopal
it's means what do u know about biology?
Phathu
what is immunisation
Melysa
the action of making a person immune to infections ,for immunisation
Kalia
what is the biology? what do you know about biology
Phathu Reply
biology is the study of living organisms, divided into many specialized fields that cover their morphology, physiology, anatomy, behavior, origin, and distribution.
Julia
The study of all aspects of life. The study of all living organisms (such as animal cells and plant cells) in greater detail (their structure and how they function). It's a very broad science.
juanita
what is prokaryotic
Bhaskar Reply
what is pathogens
Bhaskar
pathogens are a bacterium, virus, or other microorganism that can cause disease.
Lee

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask