<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Explain how vacuoles, present in microorganisms, work to excrete waste
  • Describe the way in which flame cells and nephridia in worms perform excretory functions and maintain osmotic balance
  • Explain how insects use Malpighian tubules to excrete wastes and maintain osmotic balance

Microorganisms and invertebrate animals use more primitive and simple mechanisms to get rid of their metabolic wastes than the mammalian system of kidney and urinary function. Three excretory systems evolved in organisms before complex kidneys: vacuoles, flame cells, and Malpighian tubules.

Contractile vacuoles in microorganisms

The most fundamental feature of life is the presence of a cell. In other words, a cell is the simplest functional unit of a life. Bacteria are unicellular, prokaryotic organisms that have some of the least complex life processes in place; however, prokaryotes such as bacteria do not contain membrane-bound vacuoles. The cells of microorganisms like bacteria, protozoa, and fungi are bound by cell membranes and use them to interact with the environment. Some cells, including some leucocytes in humans, are able to engulf food by endocytosis—the formation of vesicles by involution of the cell membrane within the cells. The same vesicles are able to interact and exchange metabolites with the intracellular environment. In some unicellular eukaryotic organisms such as the amoeba, shown in [link] , cellular wastes and excess water are excreted by exocytosis, when the contractile vacuoles merge with the cell membrane and expel wastes into the environment. Contractile vacuoles (CV) should not be confused with vacuoles, which store food or water.

In this illustration, a cell extends a pseudopod to consume a food particle. The consumed particle is encapsulated in a vesicle. The vesicle fuses with a lysosome, and proteins inside the lysosome digest the food particle. After the food is digested, the vesicle fuses with the cell membrane, and undigested remains are excreted.
Some unicellular organisms, such as the amoeba, ingest food by endocytosis. The food vesicle fuses with a lysosome, which digests the food. Waste is excreted by exocytosis.

Flame cells of planaria and nephridia of worms

As multi-cellular systems evolved to have organ systems that divided the metabolic needs of the body, individual organs evolved to perform the excretory function. Planaria are flatworms that live in fresh water. Their excretory system consists of two tubules connected to a highly branched duct system. The cells in the tubules are called flame cells (or protonephridia ) because they have a cluster of cilia that looks like a flickering flame when viewed under the microscope, as illustrated in [link] a . The cilia propel waste matter down the tubules and out of the body through excretory pores that open on the body surface; cilia also draw water from the interstitial fluid, allowing for filtration. Any valuable metabolites are recovered by reabsorption. Flame cells are found in flatworms, including parasitic tapeworms and free-living planaria. They also maintain the organism’s osmotic balance.

Illustration A shows a flame cell, which is bulb-shaped with cilia projecting from one end. The cilia form a point, like the tip of a paintbrush, inside as wide opening at the end of a tube cell. The tube cell narrows into a tubule, then widens into a body where the nucleus is located. The tubule continues past the cell body. Illustration B shows a cross section of an earthworm, which is segmented with walls separating each segment. The trumpet-like opening of a nephridium sticks out of the wall. Cilia surround the opening. Beyond the wall, the nephridium forms a tube that winds down to the ventral surface, where it connects with an opening to the exterior. Just above the opening the tube widens into a bladder.
In the excretory system of the (a) planaria, cilia of flame cells propel waste through a tubule formed by a tube cell. Tubules are connected into branched structures that lead to pores located all along the sides of the body. The filtrate is secreted through these pores. In (b) annelids such as earthworms, nephridia filter fluid from the coelom, or body cavity. Beating cilia at the opening of the nephridium draw water from the coelom into a tubule. As the filtrate passes down the tubules, nutrients and other solutes are reabsorbed by capillaries. Filtered fluid containing nitrogenous and other wastes is stored in a bladder and then secreted through a pore in the side of the body.

Earthworms (annelids) have slightly more evolved excretory structures called nephridia    , illustrated in [link] b . A pair of nephridia is present on each segment of the earthworm. They are similar to flame cells in that they have a tubule with cilia. Excretion occurs through a pore called the nephridiopore    . They are more evolved than the flame cells in that they have a system for tubular reabsorption by a capillary network before excretion.

Malpighian tubules of insects

Malpighian tubules are found lining the gut of some species of arthropods, such as the bee illustrated in [link] . They are usually found in pairs and the number of tubules varies with the species of insect. Malpighian tubules are convoluted, which increases their surface area, and they are lined with microvilli    for reabsorption and maintenance of osmotic balance. Malpighian tubules work cooperatively with specialized glands in the wall of the rectum. Body fluids are not filtered as in the case of nephridia; urine is produced by tubular secretion mechanisms by the cells lining the Malpighian tubules that are bathed in hemolymph (a mixture of blood and interstitial fluid that is found in insects and other arthropods as well as most mollusks). Metabolic wastes like uric acid freely diffuse into the tubules. There are exchange pumps lining the tubules, which actively transport H + ions into the cell and K + or Na + ions out; water passively follows to form urine. The secretion of ions alters the osmotic pressure which draws water, electrolytes, and nitrogenous waste (uric acid) into the tubules. Water and electrolytes are reabsorbed when these organisms are faced with low-water environments, and uric acid is excreted as a thick paste or powder. Not dissolving wastes in water helps these organisms to conserve water; this is especially important for life in dry environments.

Illustration shows the digestive tract of a bee. Food enters the mouth, and then goes through the stomach to the intestine. The Malpighian tubules are wormlike protrusions that form a band around the intestine. After the intestine, food enters a bulge called the rectum, and exits through the anus.
Malpighian tubules of insects and other terrestrial arthropods remove nitrogenous wastes and other solutes from the hemolymph. Na + and/or K + ions are actively transported into the lumen of the tubules. Water then enters the tubules via osmosis, forming urine. The urine passes through the intestine, and into the rectum. There, nutrients diffuse back into the hemolymph. Na + and/or K + ions are pumped into the hemolymph, and water follows. The concentrated waste is then excreted.

See a dissected cockroach, including a close-up look at its Malpighian tubules.

Section summary

Many systems have evolved for excreting wastes that are simpler than the kidney and urinary systems of vertebrate animals. The simplest system is that of contractile vacuoles present in microorganisms. Flame cells and nephridia in worms perform excretory functions and maintain osmotic balance. Some insects have evolved Malpighian tubules to excrete wastes and maintain osmotic balance.

Questions & Answers

how to know photocatalytic properties of tio2 nanoparticles...what to do now
Akash Reply
it is a goid question and i want to know the answer as well
Maciej
Do somebody tell me a best nano engineering book for beginners?
s. Reply
what is fullerene does it is used to make bukky balls
Devang Reply
are you nano engineer ?
s.
what is the Synthesis, properties,and applications of carbon nano chemistry
Abhijith Reply
Mostly, they use nano carbon for electronics and for materials to be strengthened.
Virgil
is Bucky paper clear?
CYNTHIA
so some one know about replacing silicon atom with phosphorous in semiconductors device?
s. Reply
Yeah, it is a pain to say the least. You basically have to heat the substarte up to around 1000 degrees celcius then pass phosphene gas over top of it, which is explosive and toxic by the way, under very low pressure.
Harper
Do you know which machine is used to that process?
s.
how to fabricate graphene ink ?
SUYASH Reply
for screen printed electrodes ?
SUYASH
What is lattice structure?
s. Reply
of graphene you mean?
Ebrahim
or in general
Ebrahim
in general
s.
Graphene has a hexagonal structure
tahir
On having this app for quite a bit time, Haven't realised there's a chat room in it.
Cied
what is biological synthesis of nanoparticles
Sanket Reply
what's the easiest and fastest way to the synthesize AgNP?
Damian Reply
China
Cied
types of nano material
abeetha Reply
I start with an easy one. carbon nanotubes woven into a long filament like a string
Porter
many many of nanotubes
Porter
what is the k.e before it land
Yasmin
what is the function of carbon nanotubes?
Cesar
I'm interested in nanotube
Uday
what is nanomaterials​ and their applications of sensors.
Ramkumar Reply
what is nano technology
Sravani Reply
what is system testing?
AMJAD
preparation of nanomaterial
Victor Reply
Yes, Nanotechnology has a very fast field of applications and their is always something new to do with it...
Himanshu Reply
good afternoon madam
AMJAD
what is system testing
AMJAD
what is the application of nanotechnology?
Stotaw
In this morden time nanotechnology used in many field . 1-Electronics-manufacturad IC ,RAM,MRAM,solar panel etc 2-Helth and Medical-Nanomedicine,Drug Dilivery for cancer treatment etc 3- Atomobile -MEMS, Coating on car etc. and may other field for details you can check at Google
Azam
anybody can imagine what will be happen after 100 years from now in nano tech world
Prasenjit
after 100 year this will be not nanotechnology maybe this technology name will be change . maybe aftet 100 year . we work on electron lable practically about its properties and behaviour by the different instruments
Azam
name doesn't matter , whatever it will be change... I'm taking about effect on circumstances of the microscopic world
Prasenjit
how hard could it be to apply nanotechnology against viral infections such HIV or Ebola?
Damian
silver nanoparticles could handle the job?
Damian
not now but maybe in future only AgNP maybe any other nanomaterials
Azam
Hello
Uday
I'm interested in Nanotube
Uday
this technology will not going on for the long time , so I'm thinking about femtotechnology 10^-15
Prasenjit
can nanotechnology change the direction of the face of the world
Prasenjit Reply
how did you get the value of 2000N.What calculations are needed to arrive at it
Smarajit Reply
Privacy Information Security Software Version 1.1a
Good
Got questions? Join the online conversation and get instant answers!
QuizOver.com Reply

Get the best Algebra and trigonometry course in your pocket!





Source:  OpenStax, Bmcc 103 - concepts of biology. OpenStax CNX. Aug 06, 2015 Download for free at https://legacy.cnx.org/content/col11855/1.2
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Bmcc 103 - concepts of biology' conversation and receive update notifications?

Ask