<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the structure of the heart and explain how cardiac muscle is different from other muscles
  • Describe the cardiac cycle
  • Explain the structure of arteries, veins, and capillaries, and how blood flows through the body

The heart is a complex muscle that pumps blood through the three divisions of the circulatory system: the coronary (vessels that serve the heart), pulmonary (heart and lungs), and systemic (systems of the body), as shown in [link] . Coronary circulation intrinsic to the heart takes blood directly from the main artery (aorta) coming from the heart. For pulmonary and systemic circulation, the heart has to pump blood to the lungs or the rest of the body, respectively. In vertebrates, the lungs are relatively close to the heart in the thoracic cavity. The shorter distance to pump means that the muscle wall on the right side of the heart is not as thick as the left side which must have enough pressure to pump blood all the way to your big toe.

Art connection

Illustration shows blood circulation through the mammalian systemic and pulmonary circuits. Blood enters the left atrium, the upper left chamber of the heart, through veins of the systemic circuit. The major vein that feeds the heart from the upper body is the superior vena cava, and the major vein that feeds the heart from the lower body is the inferior vena cava. From the left atrium blood travels down to the left ventricle, then up to the pulmonary artery. From the pulmonary artery blood enters capillaries of the lung. Blood is then collected by the pulmonary vein, and re-enters the heart through the upper left chamber of the heart, the left atrium. Blood travels down to the left ventricle, then re-enters the systemic circuit through the aorta, which exits through the top of the heart. Blood enters tissues of the body through capillaries of the systemic circuit.
The mammalian circulatory system is divided into three circuits: the systemic circuit, the pulmonary circuit, and the coronary circuit. Blood is pumped from veins of the systemic circuit into the right atrium of the heart, then into the right ventricle. Blood then enters the pulmonary circuit, and is oxygenated by the lungs. From the pulmonary circuit, blood re-enters the heart through the left atrium. From the left ventricle, blood re-enters the systemic circuit through the aorta and is distributed to the rest of the body. The coronary circuit, which provides blood to the heart, is not shown.

Which of the following statements about the circulatory system is false?

  1. Blood in the pulmonary vein is deoxygenated.
  2. Blood in the inferior vena cava is deoxygenated.
  3. Blood in the pulmonary artery is deoxygenated.
  4. Blood in the aorta is oxygenated.

Structure of the heart

The heart muscle is asymmetrical as a result of the distance blood must travel in the pulmonary and systemic circuits. Since the right side of the heart sends blood to the pulmonary circuit it is smaller than the left side which must send blood out to the whole body in the systemic circuit, as shown in [link] . In humans, the heart is about the size of a clenched fist; it is divided into four chambers: two atria and two ventricles. There is one atrium and one ventricle on the right side and one atrium and one ventricle on the left side. The atria are the chambers that receive blood, and the ventricles are the chambers that pump blood. The right atrium receives deoxygenated blood from the superior vena cava    , which drains blood from the jugular vein that comes from the brain and from the veins that come from the arms, as well as from the inferior vena cava    which drains blood from the veins that come from the lower organs and the legs. In addition, the right atrium receives blood from the coronary sinus which drains deoxygenated blood from the heart itself. This deoxygenated blood then passes to the right ventricle through the atrioventricular valve    or the tricuspid valve    , a flap of connective tissue that opens in only one direction to prevent the backflow of blood. The valve separating the chambers on the left side of the heart valve is called the biscuspid or mitral valve. After it is filled, the right ventricle pumps the blood through the pulmonary arteries, by-passing the semilunar valve    (or pulmonic valve) to the lungs for re-oxygenation. After blood passes through the pulmonary arteries, the right semilunar valves close preventing the blood from flowing backwards into the right ventricle. The left atrium then receives the oxygen-rich blood from the lungs via the pulmonary veins. This blood passes through the bicuspid valve    or mitral valve (the atrioventricular valve on the left side of the heart) to the left ventricle where the blood is pumped out through aorta    , the major artery of the body, taking oxygenated blood to the organs and muscles of the body. Once blood is pumped out of the left ventricle and into the aorta, the aortic semilunar valve (or aortic valve) closes preventing blood from flowing backward into the left ventricle. This pattern of pumping is referred to as double circulation and is found in all mammals.

Questions & Answers

the properties of life
Clarinda Reply
response to the environment, reproduction, homeostasis, growth,energy processing etc.....
a complete virus particle known as
Darlington Reply
These are formed from identical protein subunitscalled capsomeres.
fabace family plant name
Pushpam Reply
in eukaryotes ...protein channel name which transport protein ...
Pushpam Reply
in bacteria ...chromosomal dna duplicate structure called
what is a prokaryotic cell and a eukaryotic cell
Matilda Reply
There are two types of cells. Eukaryotic and Prokaryotic cells. Prokaryotic cells don't have a nucleus or membrane enclosed organelles (little organs within that cell). They do however carry genetic material but it's not maintained in the nucleus. Prokaryotic cells are also one celled.
Prokaryotic cells are one celled (single celled).
Prokaryotic cells are Bacteria and Archea
Prokaryotic cells are smaller than Eukaryotic cells.
Eukaryotic cells are more complex. They are much bigger than Prokaryotic cells.
Eukaryotic cells have a nucleus and membrane bound organelles.
Eukaryotic cells are animals cells which also includes us.
Eukaryotic cells are also multicellular.
nice explaination
eukaryotic cells are individual cells .. but eukaryotes are multicellular organisms which consist of many different types of eukaryotic cells
also eukaryotic cells have mitochondria. prokaryotic cells do not
in prokaryotes only ribosomes are present... in eukaryotes mitochondria ...glogi bodies ..epidermis .....prokaryotes one envelop but eukaryotes compartment envelop....envelop mean membrane bound organelles......
prokaryotic cell are cells dat have no true nuclei i.e no cell membrane while eukaryotic cell are cell dat have true nuclei i.e have cell membrane
we have 46 pair of somatic cell and 23 pair of chromosomes in our body, pls can someone explain it to me. pls
Matilda Reply
we have 22 pairs of somatic chromosomes and one pair of sex chromosome
we have 23 pairs of chromosomes,22 pairs of somatic and one pair of sex chromosomes
23 chromosomes from dad & 23 chromosomes from mom 23 +23=46 total chromosomes
X & Y chromosomes are called sex cells, the very presence of a Y chromosome means the person is Male.
XX Female XY Male
If a Karyotype has more than 46 Chromosomes then nondisjunction occured. For example, having an extra chromosome 21 will cause Down Syndrome.
in mammal state the different vertebrae and their location in the body
Igbinigie Reply
what is a somatic cell
Senam Reply
somatic cells are body cells
somatic cell organised whole plant body part
what is biology
lilian Reply
what is biology
Dada Reply
The scientific study of life.
the study of life
the virus that causes mumps in humans is composed of a protein outer Shell containing a core of DNA
Daniel Reply
Basic science and applied science question about cancer
Joyce Reply
what are the importance of ATPs
Olatunji Reply
How can biology be studied from a microscopic approach to a global approach
Joyce Reply
The large central opening in the poriferan body is called
Chynna Reply

Get the best Biology course in your pocket!

Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?