<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the need for a comprehensive classification system
  • List the different levels of the taxonomic classification system
  • Describe how systematics and taxonomy relate to phylogeny
  • Discuss the components and purpose of a phylogenetic tree

In scientific terms, the evolutionary history and relationship of an organism or group of organisms is called its phylogeny    . A phylogeny describes the relationships of an organism, such as from which organisms it is thought to have evolved, to which species it is most closely related, and so forth. Phylogenetic relationships provide information on shared ancestry but not necessarily on how organisms are similar or different.

Phylogenetic trees

Scientists use a tool called a phylogenetic tree to show the evolutionary pathways and connections among organisms. A phylogenetic tree    is a diagram used to reflect evolutionary relationships among organisms or groups of organisms. Scientists consider phylogenetic trees to be a hypothesis of the evolutionary past since one cannot go back to confirm the proposed relationships. In other words, a “tree of life” can be constructed to illustrate when different organisms evolved and to show the relationships among different organisms ( [link] ).

Unlike a taxonomic classification diagram, a phylogenetic tree can be read like a map of evolutionary history. Many phylogenetic trees have a single lineage at the base representing a common ancestor. Scientists call such trees rooted    , which means there is a single ancestral lineage (typically drawn from the bottom or left) to which all organisms represented in the diagram relate. Notice in the rooted phylogenetic tree that the three domains— Bacteria, Archaea, and Eukarya—diverge from a single point and branch off. The small branch that plants and animals (including humans) occupy in this diagram shows how recent and miniscule these groups are compared with other organisms. Unrooted trees don’t show a common ancestor but do show relationships among species.

The phylogenetic tree in part a is rooted and resembles a living tree, with a common ancestor indicated as the base of the trunk. Two branches form from the trunk. The left branch leads to the domain Bacteria. The right branch branches again, giving rise to Archaea and Eukarya. Smaller branches within each domain indicate the groups present in that domain. The phylogenetic tree in part B is unrooted. It does not resemble a living tree; rather, groups of organisms within the Archaea, Eukarya, and Bacteria domains are arranged in a circle. Lines connect the groups within each domain. The groups within Archaea and Eukarya are then connected together. A line from the Archaea/ Eukarya domains, and another from the Bacteria meet in the center of the circle. There is no root, and therefore no indication of which domain arose first.
Both of these phylogenetic trees shows the relationship of the three domains of life—Bacteria, Archaea, and Eukarya—but the (a) rooted tree attempts to identify when various species diverged from a common ancestor while the (b) unrooted tree does not. (credit a: modification of work by Eric Gaba)

In a rooted tree, the branching indicates evolutionary relationships ( [link] ). The point where a split occurs, called a branch point    , represents where a single lineage evolved into a distinct new one. A lineage that evolved early from the root and remains unbranched is called basal taxon    . When two lineages stem from the same branch point, they are called sister taxa    . A branch with more than two lineages is called a polytomy    and serves to illustrate where scientists have not definitively determined all of the relationships. It is important to note that although sister taxa and polytomy do share an ancestor, it does not mean that the groups of organisms split or evolved from each other. Organisms in two taxa may have split apart at a specific branch point, but neither taxa gave rise to the other.

Questions & Answers

the properties of life
Clarinda Reply
response to the environment, reproduction, homeostasis, growth,energy processing etc.....
Pushpam
hello.
Daniela
hi
MacPeter
a complete virus particle known as
Darlington Reply
These are formed from identical protein subunitscalled capsomeres.
Pushpam
fabace family plant name
Pushpam Reply
in eukaryotes ...protein channel name which transport protein ...
Pushpam Reply
in bacteria ...chromosomal dna duplicate structure called
Pushpam
what is a prokaryotic cell and a eukaryotic cell
Matilda Reply
There are two types of cells. Eukaryotic and Prokaryotic cells. Prokaryotic cells don't have a nucleus or membrane enclosed organelles (little organs within that cell). They do however carry genetic material but it's not maintained in the nucleus. Prokaryotic cells are also one celled.
juanita
Prokaryotic cells are one celled (single celled).
juanita
Prokaryotic cells are Bacteria and Archea
juanita
Prokaryotic cells are smaller than Eukaryotic cells.
juanita
Eukaryotic cells are more complex. They are much bigger than Prokaryotic cells.
juanita
Eukaryotic cells have a nucleus and membrane bound organelles.
juanita
Eukaryotic cells are animals cells which also includes us.
juanita
Eukaryotic cells are also multicellular.
juanita
nice explaination
Amna
eukaryotic cells are individual cells .. but eukaryotes are multicellular organisms which consist of many different types of eukaryotic cells
Will
also eukaryotic cells have mitochondria. prokaryotic cells do not
Will
Good
John
in prokaryotes only ribosomes are present... in eukaryotes mitochondria ...glogi bodies ..epidermis .....prokaryotes one envelop but eukaryotes compartment envelop....envelop mean membrane bound organelles......
Pushpam
prokaryotic cell are cells dat have no true nuclei i.e no cell membrane while eukaryotic cell are cell dat have true nuclei i.e have cell membrane
Divine
we have 46 pair of somatic cell and 23 pair of chromosomes in our body, pls can someone explain it to me. pls
Matilda Reply
we have 22 pairs of somatic chromosomes and one pair of sex chromosome
Amna
thanks
Matilda
we have 23 pairs of chromosomes,22 pairs of somatic and one pair of sex chromosomes
Amna
23 chromosomes from dad & 23 chromosomes from mom 23 +23=46 total chromosomes
juanita
X & Y chromosomes are called sex cells, the very presence of a Y chromosome means the person is Male.
juanita
XX Female XY Male
juanita
If a Karyotype has more than 46 Chromosomes then nondisjunction occured. For example, having an extra chromosome 21 will cause Down Syndrome.
juanita
in mammal state the different vertebrae and their location in the body
Igbinigie Reply
what is a somatic cell
Senam Reply
somatic cells are body cells
juanita
somatic cell organised whole plant body part
Pushpam
what is biology
lilian Reply
what is biology
Dada Reply
The scientific study of life.
juanita
the study of life
Clarinda
the virus that causes mumps in humans is composed of a protein outer Shell containing a core of DNA
Daniel Reply
Basic science and applied science question about cancer
Joyce Reply
what are the importance of ATPs
Olatunji Reply
How can biology be studied from a microscopic approach to a global approach
Joyce Reply
The large central opening in the poriferan body is called
Chynna Reply

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask