<< Chapter < Page Chapter >> Page >

Each copy of a homologous pair of chromosomes originates from a different parent; therefore, the genes themselves are not identical. The variation of individuals within a species is due to the specific combination of the genes inherited from both parents. Even a slightly altered sequence of nucleotides within a gene can result in an alternative trait. For example, there are three possible gene sequences on the human chromosome that code for blood type: sequence A, sequence B, and sequence O. Because all diploid human cells have two copies of the chromosome that determines blood type, the blood type (the trait) is determined by which two versions of the marker gene are inherited. It is possible to have two copies of the same gene sequence on both homologous chromosomes, with one on each (for example, AA, BB, or OO), or two different sequences, such as AB.

Minor variations of traits, such as blood type, eye color, and handedness, contribute to the natural variation found within a species. However, if the entire DNA sequence from any pair of human homologous chromosomes is compared, the difference is less than one percent. The sex chromosomes, X and Y, are the single exception to the rule of homologous chromosome uniformity: Other than a small amount of homology that is necessary to accurately produce gametes, the genes found on the X and Y chromosomes are different.

Eukaryotic chromosomal structure and compaction

If the DNA from all 46 chromosomes in a human cell nucleus was laid out end to end, it would measure approximately two meters; however, its diameter would be only 2 nm. Considering that the size of a typical human cell is about 10 µm (100,000 cells lined up to equal one meter), DNA must be tightly packaged to fit in the cell’s nucleus. At the same time, it must also be readily accessible for the genes to be expressed. During some stages of the cell cycle, the long strands of DNA are condensed into compact chromosomes. There are a number of ways that chromosomes are compacted.

In the first level of compaction, short stretches of the DNA double helix wrap around a core of eight histone proteins at regular intervals along the entire length of the chromosome ( [link] ). The DNA-histone complex is called chromatin. The beadlike, histone DNA complex is called a nucleosome    , and DNA connecting the nucleosomes is called linker DNA. A DNA molecule in this form is about seven times shorter than the double helix without the histones, and the beads are about 10 nm in diameter, in contrast with the 2-nm diameter of a DNA double helix. The next level of compaction occurs as the nucleosomes and the linker DNA between them are coiled into a 30-nm chromatin fiber. This coiling further shortens the chromosome so that it is now about 50 times shorter than the extended form. In the third level of packing, a variety of fibrous proteins is used to pack the chromatin. These fibrous proteins also ensure that each chromosome in a non-dividing cell occupies a particular area of the nucleus that does not overlap with that of any other chromosome (see the top image in [link] ).

There are five levels of chromosome organization. From top to bottom: The top panel shows a DNA double helix. The second panel shows the double helix wrapped around proteins called histones. The middle panel shows the entire DNA molecule wrapping around many histones, creating the appearance of beads on a string. The fourth panel shows that the chromatin fiber further condenses into the chromosome shown in the bottom panel.
Double-stranded DNA wraps around histone proteins to form nucleosomes that have the appearance of “beads on a string.” The nucleosomes are coiled into a 30-nm chromatin fiber. When a cell undergoes mitosis, the chromosomes condense even further.

DNA replicates in the S phase of interphase. After replication, the chromosomes are composed of two linked sister chromatids . When fully compact, the pairs of identically packed chromosomes are bound to each other by cohesin proteins. The connection between the sister chromatids is closest in a region called the centromere    . The conjoined sister chromatids, with a diameter of about 1 µm, are visible under a light microscope. The centromeric region is highly condensed and thus will appear as a constricted area.

This animation illustrates the different levels of chromosome packing.

Section summary

Prokaryotes have a single circular chromosome composed of double-stranded DNA, whereas eukaryotes have multiple, linear chromosomes composed of chromatin surrounded by a nuclear membrane. The 46 chromosomes of human somatic cells are composed of 22 pairs of autosomes (matched pairs) and a pair of sex chromosomes, which may or may not be matched. This is the 2 n or diploid state. Human gametes have 23 chromosomes or one complete set of chromosomes; a set of chromosomes is complete with either one of the sex chromosomes. This is the n or haploid state. Genes are segments of DNA that code for a specific protein. An organism’s traits are determined by the genes inherited from each parent. Duplicated chromosomes are composed of two sister chromatids. Chromosomes are compacted using a variety of mechanisms during certain stages of the cell cycle. Several classes of protein are involved in the organization and packing of the chromosomal DNA into a highly condensed structure. The condensing complex compacts chromosomes, and the resulting condensed structure is necessary for chromosomal segregation during mitosis.

Questions & Answers

what is matter
Emmanuel Reply
matter is anything that has mass and can occupied space
Alice
weight
Alice
how the kidney functions as osmoregulatory organ
Sam Reply
That true
Banda
what is the major connection for sugars in glycolysis?
Ibrahim Reply
Simple term of science
Palesa Reply
what does it mean
gopal
it's means what do u know about biology?
Phathu
what is immunisation
Melysa
the action of making a person immune to infections ,for immunisation
Kalia
what is the biology? what do you know about biology
Phathu Reply
biology is the study of living organisms, divided into many specialized fields that cover their morphology, physiology, anatomy, behavior, origin, and distribution.
Julia
The study of all aspects of life. The study of all living organisms (such as animal cells and plant cells) in greater detail (their structure and how they function). It's a very broad science.
juanita
what is prokaryotic
Bhaskar Reply
what is pathogens
Bhaskar
transistion metals....
Wasik Reply
Why study ecology
Amos Reply
What name is given to group 8metals on a periodic table
Amos
to know interaction of living organisms and their environment
Alice
what is evolution
Elia Reply
Is the gradual change of something it can be either organisms
Amos
which of the following statements about the moss life cycle is false?
Israel Reply
posterior lobe of pitutary contains what?
MR Reply
What if vincristine and colchicibe disrupt mitosis by binding to tubulin
Rohith Reply
A plant in the understory of a forest displays a segmented stem and slender leaves arranged in a whorl. It is probably....
Israel Reply
How did the development of a vascular system contribute to the increase in size of plants?
Israel
If a flower lacked a megasporangium and microsporangium, what type of gametes would not form?
Israel
Seed plants are.. A. all homosporous B. mostly homosporous with some heterosporous C. mostly heterosporous with some homosporous D. all heterosporous
Israel
Besides the seed, what other major structure diminishes a plant's reliance on water for reproduction?
Israel
what role did the adaptations of seed and pollen play in the development and expansion of seed plants?
Israel
Some cycads are considered endangered species and their trade is severely restricted. Customs officials stop suspected smugglers who claim that the plants in their possession are palm trees, not cycads. How would a botanist distinguish between the two types of plants?
Israel
What are the two structures that allow angiosperms to be the dominant form of plant life in most terrestrial ecosystems?
Israel
how are carbohydrates,proteins and fats formed from triose phosphate
fonyuy Reply
Why does the actin filament only move in one direction? Describe in great detail.
Lashonda Reply
Two events happen when calcium binds to troponin.
Lashonda

Get the best Biology course in your pocket!





Source:  OpenStax, Biology. OpenStax CNX. Feb 29, 2016 Download for free at http://cnx.org/content/col11448/1.10
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Biology' conversation and receive update notifications?

Ask