<< Chapter < Page Chapter >> Page >

Calculations show that accretion can drive the rapid growth of planets—small, dust-grain-size particles orbiting in the disk collide and stick together, with the larger collections growing more rapidly as they attract and capture smaller ones. Once these clumps grow to about 10 centimeters in size or so, they enter a perilous stage in their development. At that size, unless they can grow to larger than about 100 meters in diameter, they are subject to drag forces produced by friction with the gas in the disk—and their orbits can rapidly decay, plunging them into the host star. Therefore, these bodies must rapidly grow to nearly 1 kilometer in size in diameter to avoid a fiery fate. At this stage, they are considered planetesimals (the small chunks of solid matter—ice and dust particles—that you learned about in Other Worlds: An Introduction to the Solar System ). Once they survive to those sizes, the largest survivors will continue to grow by accreting smaller planetesimals; ultimately, this process results in a few large planets.

If the growing planets reach a mass bigger than about 10 times the mass of Earth, their gravity is strong enough to capture and hold on to hydrogen gas that remains in the disk. At that point, they will grow in mass and radius rapidly, reaching giant planet dimensions. However, to do so requires that the rapidly evolving central star hasn’t yet driven away the gas in the disk with its increasingly vigorous wind (see the earlier section on Star Formation ). From observations, we see that the disk can be blown away within 10 million years, so growth of a giant planet must also be a very fast process, astronomically speaking.

Debris disks and shepherd planets

The dust around newly formed stars is gradually either incorporated into the growing planets in the newly forming planetary system or ejected through gravitational interactions with the planets into space. The dust will disappear after about 30 million years unless the disk is continually supplied with new material. Local comets and asteroids are the most likely sources of new dust. As the planet-size bodies grow, they stir up the orbits of smaller objects in the area. These small bodies collide at high speeds, shatter, and produce tiny particles of silicate dust and ices that can keep the disk supplied with the debris from these collisions.

Over several hundred million years, the comets and asteroids will gradually be reduced in number, the frequency of collisions will go down, and the supply of fresh dust will diminish. Remember that the heavy bombardment in the early solar system ended when the Sun was only about 500 million years old. Observations show that the dusty “debris disks” around stars also become largely undetectable by the time the stars reach an age of 400 to 500 million years. It is likely, however, that some small amount of cometary material will remain in orbit, much like our Kuiper belt, a flattened disk of comets outside the orbit of Neptune.

In a young planetary system, even if we cannot see the planets directly, the planets can concentrate the dust particles into clumps and arcs that are much larger than the planets themselves and more easily imaged. This is similar to how the tiny moons of Saturn shepherd the particles in the rings and produce large arcs and structures in Saturn’s rings.

Debris disks—many with just such clumps and arcs—have now been found around many stars, such as HL Tau , located about 450 light-years from Earth in the constellation Taurus ( [link] ). In some stars, the brightness of the rings varies with position; around other stars, there are bright arcs and gaps in the rings. The brightness indicates the relative concentration of dust, since what we are seeing is infrared (heat radiation) from the dust particles in the rings. More dust means more radiation.

Dust ring around a young star.

Near-Infrared Image of the Dust Ring Orbiting the Young Star HL Tauri. The ring surrounding the star is seen here nearly face-on, and thus appears nearly circular. There are many dark gaps in the rings, similar to the appearance of the rings of Saturn. These gaps reveal the presence of emerging planetary bodies forming in the disk around HL Tauri.
This image was made by ALMA (the Atacama Large Millimeter/Submillimeter Array) at a wavelength of 1.3 millimeters and shows the young star HL Tau and its protoplanetary disk. It reveals multiple rings and gaps that indicate the presence of emerging planets, which are sweeping their orbits clear of dust and gas. (credit: modification of work by ALMA (ESO/NAOJ/NRAO))

Key concepts and summary

Observational evidence shows that most protostars are surrounded by disks with large-enough diameters and enough mass (as much as 10% that of the Sun) to form planets. After a few million years, the inner part of the disk is cleared of dust, and the disk is then shaped like a donut with the protostar centered in the hole—something that can be explained by the formation of planets in that inner zone. Around a few older stars, we see disks formed from the debris produced when small bodies (comets and asteroids) collide with each other. The distribution of material in the rings of debris disks is probably determined by shepherd planets, just as Saturn’s shepherd moons affect the orbits of the material in its rings. Protoplanets that grow to be 10 times the mass of Earth or bigger while there is still considerable gas in their disk can then capture more of that gas and become giant planets like Jupiter in the solar system.

Questions & Answers

what is time
Abdul Reply
Time is relative
mrunal
pls elaborate
sakshi
the clear defination.I know that.
Abdul
In planet mars there the life exits or not and is there water there
Eshwarsa Reply
see till now nothing can be found as u know that the curiosity rover has struck in mars
Maya
what is your opinion about the theory of Vedas about modern physics..
Manish Reply
i think in some ways vedas are also correct but not everytime
Maya
I agree
sakshi
hmm even I agree
Samuel
Is there any patened theory about time relativitg in growth and development?
donot Reply
some astronomer's says that there is no alien exist but why search for extra terrestrial intelligence center is established
Eshwarsa Reply
No One Knows That For Absolute Fact, The Universe Is Too Huge To Have Any Type Of Idea About What Exist In The Far Reaches Of Our Universe.....
Adam
Check Out The Drake Equation.....
Adam
their should be aliens as like ours there would be another planet
Maya
which could have existed life on it
Maya
adam i want to ask a question
Maya
can kepler 1st law be applied on all the planets of the universe
Maya
hello, anyone home?
Denise
sjskskfhjkkktewqqw and try?
Lanika Reply
what is this ?
Samuel
hi I am Samuel from India mumbai
Samuel
nice to meet you
Samuel
thats my question, what is this?
penzias and wilson's a discovery of the cosmic microwave background is a nice example of scientific serendipity-something that is found by chance but turns out to have a positive outcome
Jacqueline Reply
how should I make my carrier in astronomy
Ayush Reply
I think that Newton's third law is not appropriate if any also thinks like this please reply me
Ayush
Can you explain your reasoning
Huh
why u think so
joseph
yes Ayush u are right
Yoganshu
I think when we apply force to a object it start moving but , a/c to Newton's third law every action has equal and opposite reaction,so object should also exert equal force on us and it should not move due to balanced force
Ayush
if I am not right then reply me
Ayush
no
Zack
because of friction that opposes that force and help us to move ahead
Manish
but this is not satisfied as third law say another thing
Ayush
you are telling why object moves
Ayush
you have to think a/c to third law
Ayush
its because of its mass
Maya
because it is applying equal and opposite force but also our mass is also less in comparison to the object
Maya
which is why we cant move the object but it can make move us
Maya
manish is too correct in his place because we need to apply force which would overcome the frictional force
Maya
My dear friends, can u plz tell me that among u guys who are in the field of cosmology
Madhav Reply
😢I am not there in cosmology
Samuel
Just A Science Fan.....
Adam
Adam even I am 😥😅😅😂😂
Samuel
I am also not in cosmology but I am just a fan or we can say science and part of NASA is my dream
Yoganshu
yoganshu Arya same here
Samuel
you are from which country
Yoganshu
hi yoganshu
Samuel
India
Samuel
which state
Samuel
I am also from India
Yoganshu
from delhi
Yoganshu
and u...?
Yoganshu
I am from Maharashtra
Samuel
from which state?
Yoganshu
You are a ASTRONOMER ...
Yoganshu
or a scientist..
Yoganshu
or just a member
Yoganshu
What is time...? not about Newton= time is constant..... that all scientists openions n point of view I m knowing. . what can be the Perfect Definition of Time
Madhav Reply
time is what clock reads
Ayush
Who is the best astronomer of India at present time
Gian Reply
Jayant Narlikar, Proponent Of Steady State Cosmology.....
Adam
What is the real colour of sun rays
Gian Reply
white.. so white it becomes violet.. so violet it become ultraviolet
Tom
white and red and yellow
Bianca
Vibgyor
Samuel
the real colour of sunlight is White
Madhav
the Sun's has a variety of waves all throughout the elextromagnetic spectrum.
Jacie
we only see it as a few bc of how some of them get redshifted (? can that term be applied for something so local?) by some particles in our upper atmosphere
Jacie
Vibgyor will be when, the white light will pass through the clouds ( prism ) then Refraction phenomenon leads us to 7 colours splitting from a single colour "White " light
Madhav
so the sun rays r of White colour
Madhav
Taurus in astronomy and horoscope?
Yasser Reply
how to put E=MC2
Gospel Reply
What Do You Mean By How To Put?
Adam
What Do You Mean By How To Put?
Adam
What Do You Mean By "How To Put E=MC2?
Adam
yep
Gospel
Hi guys
Samuel
i mean how NASA came to know the mass and diameters of Stars.how?
Gospel
how did they do using E=MC2
Gospel
thats my questioning
Gospel
that's easy formula's derivation
Madhav
why all planets revolving orbits are nearly in equal inclination?
Kartik Reply
***medium.com/starts-with-a-bang/ask-ethan-82-why-are-the-planets-all-in-the-same-plane-4470245c8743
rishabh
dependent on the mass
Madhav
no
Janak
I think because of the Suns gravity pull ,😕😕
Samuel
Samuel,. it's but obvious
Madhav

Get the best Astronomy course in your pocket!





Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask