<< Chapter < Page Chapter >> Page >

Luminosity classes.

Luminosity Classes. In this graph the vertical axis is labeled “Luminosity (L_Sun),” running from 10^-4 to 10^6 in increments of 10^2. The horizontal axis is labeled “Spectral class,” and is divided into seven equal length units. From left to right they are labeled: “O,” “B,” “A,” “F,” “G,” “K,” and “M.” The horizontal axis is also labeled “Temperature (K),” running from 25,000 on the left to 3,000 on the right. Also labeled on the horizontal axis is “Color Index.” Four values are given, “-0.4” at the beginning of spectral class “O,” “0.0” at the beginning of spectral class “A,” “0.6” at the beginning of spectral class “G,” and “+1.4” at the beginning of spectral class “M.” The five main classes of stars are plotted. Beginning at lower left of the image is an isolated group of stars labeled “White Dwarfs.” The majority of stars lie on the “Main Sequence,” which runs diagonally from upper left to lower right. Running horizontally from the center of the graph to the right is the band of “Giants.” Finally, a small number of stars running horizontally across the top of the graph are the “Supergiants.” Blue curves are plotted indicating the luminosity classes. The first blue curve crosses the entire upper part of the plot at about 10^5 L_Sun and is labeled “Ia,” corresponding to the supergiants. Parallel to “Ia,” but lower at about 10^4 L_Sun, is the blue curve of “Ib,” a subdivision of the supergiants. The next horizontal blue curve at about 10^3 L_Sun is that of luminosity class “II,” corresponding to the bright giants. The next blue curve begins on the main sequence at about spectral type A and goes horizontally to the right at about 10^2 L_Sun. This curve is labeled “III” for the giants. Another blue curve is drawn between the giants and the main sequence. It is labeled as luminosity class “IV,” corresponding to the subgiants. Finally, the last blue curve traces the entire length of the main sequence and is labeled “V.”
Stars of the same temperature (or spectral class) can fall into different luminosity classes on the Hertzsprung-Russell diagram. By studying details of the spectrum for each star, astronomers can determine which luminosity class they fall in (whether they are main-sequence stars, giant stars, or supergiant stars).

With both its spectral and luminosity classes known, a star’s position on the H–R diagram is uniquely determined. Since the diagram plots luminosity versus temperature, this means we can now read off the star’s luminosity (once its spectrum has helped us place it on the diagram). As before, if we know how luminous the star really is and see how dim it looks, the difference allows us to calculate its distance. (For historical reasons, astronomers sometimes call this method of distance determination spectroscopic parallax , even though the method has nothing to do with parallax.)

The H–R diagram method allows astronomers to estimate distances to nearby stars, as well as some of the most distant stars in our Galaxy, but it is anchored by measurements of parallax. The distances measured using parallax are the gold standard for distances: they rely on no assumptions, only geometry. Once astronomers take a spectrum of a nearby star for which we also know the parallax, we know the luminosity that corresponds to that spectral type. Nearby stars thus serve as benchmarks for more distant stars because we can assume that two stars with identical spectra have the same intrinsic luminosity.

A few words about the real world

Introductory textbooks such as ours work hard to present the material in a straightforward and simplified way. In doing so, we sometimes do our students a disservice by making scientific techniques seem too clean and painless. In the real world, the techniques we have just described turn out to be messy and difficult, and often give astronomers headaches that last long into the day.

For example, the relationships we have described such as the period-luminosity relation for certain variable stars aren’t exactly straight lines on a graph. The points representing many stars scatter widely when plotted, and thus, the distances derived from them also have a certain built-in scatter or uncertainty.

The distances we measure with the methods we have discussed are therefore only accurate to within a certain percentage of error—sometimes 10%, sometimes 25%, sometimes as much as 50% or more. A 25% error for a star estimated to be 10,000 light-years away means it could be anywhere from 7500 to 12,500 light-years away. This would be an unacceptable uncertainty if you were loading fuel into a spaceship for a trip to the star, but it is not a bad first figure to work with if you are an astronomer stuck on planet Earth.

Nor is the construction of H–R diagrams as easy as you might think at first. To make a good diagram, one needs to measure the characteristics and distances of many stars, which can be a time-consuming task. Since our own solar neighborhood is already well mapped, the stars astronomers most want to study to advance our knowledge are likely to be far away and faint. It may take hours of observing to obtain a single spectrum. Observers may have to spend many nights at the telescope (and many days back home working with their data) before they get their distance measurement. Fortunately, this is changing because surveys like Gaia will study billions of stars, producing public datasets that all astronomers can use.

Questions & Answers

what is time
Abdul Reply
Time is relative
mrunal
pls elaborate
sakshi
the clear defination.I know that.
Abdul
In planet mars there the life exits or not and is there water there
Eshwarsa Reply
see till now nothing can be found as u know that the curiosity rover has struck in mars
Maya
what is your opinion about the theory of Vedas about modern physics..
Manish Reply
i think in some ways vedas are also correct but not everytime
Maya
I agree
sakshi
hmm even I agree
Samuel
Is there any patened theory about time relativitg in growth and development?
donot Reply
some astronomer's says that there is no alien exist but why search for extra terrestrial intelligence center is established
Eshwarsa Reply
No One Knows That For Absolute Fact, The Universe Is Too Huge To Have Any Type Of Idea About What Exist In The Far Reaches Of Our Universe.....
Adam
Check Out The Drake Equation.....
Adam
their should be aliens as like ours there would be another planet
Maya
which could have existed life on it
Maya
adam i want to ask a question
Maya
can kepler 1st law be applied on all the planets of the universe
Maya
hello, anyone home?
Denise
sjskskfhjkkktewqqw and try?
Lanika Reply
what is this ?
Samuel
hi I am Samuel from India mumbai
Samuel
nice to meet you
Samuel
thats my question, what is this?
penzias and wilson's a discovery of the cosmic microwave background is a nice example of scientific serendipity-something that is found by chance but turns out to have a positive outcome
Jacqueline Reply
how should I make my carrier in astronomy
Ayush Reply
I think that Newton's third law is not appropriate if any also thinks like this please reply me
Ayush
Can you explain your reasoning
Huh
why u think so
joseph
yes Ayush u are right
Yoganshu
I think when we apply force to a object it start moving but , a/c to Newton's third law every action has equal and opposite reaction,so object should also exert equal force on us and it should not move due to balanced force
Ayush
if I am not right then reply me
Ayush
no
Zack
because of friction that opposes that force and help us to move ahead
Manish
but this is not satisfied as third law say another thing
Ayush
you are telling why object moves
Ayush
you have to think a/c to third law
Ayush
its because of its mass
Maya
because it is applying equal and opposite force but also our mass is also less in comparison to the object
Maya
which is why we cant move the object but it can make move us
Maya
manish is too correct in his place because we need to apply force which would overcome the frictional force
Maya
My dear friends, can u plz tell me that among u guys who are in the field of cosmology
Madhav Reply
😢I am not there in cosmology
Samuel
Just A Science Fan.....
Adam
Adam even I am 😥😅😅😂😂
Samuel
I am also not in cosmology but I am just a fan or we can say science and part of NASA is my dream
Yoganshu
yoganshu Arya same here
Samuel
you are from which country
Yoganshu
hi yoganshu
Samuel
India
Samuel
which state
Samuel
I am also from India
Yoganshu
from delhi
Yoganshu
and u...?
Yoganshu
I am from Maharashtra
Samuel
from which state?
Yoganshu
You are a ASTRONOMER ...
Yoganshu
or a scientist..
Yoganshu
or just a member
Yoganshu
What is time...? not about Newton= time is constant..... that all scientists openions n point of view I m knowing. . what can be the Perfect Definition of Time
Madhav Reply
time is what clock reads
Ayush
Who is the best astronomer of India at present time
Gian Reply
Jayant Narlikar, Proponent Of Steady State Cosmology.....
Adam
What is the real colour of sun rays
Gian Reply
white.. so white it becomes violet.. so violet it become ultraviolet
Tom
white and red and yellow
Bianca
Vibgyor
Samuel
the real colour of sunlight is White
Madhav
the Sun's has a variety of waves all throughout the elextromagnetic spectrum.
Jacie
we only see it as a few bc of how some of them get redshifted (? can that term be applied for something so local?) by some particles in our upper atmosphere
Jacie
Vibgyor will be when, the white light will pass through the clouds ( prism ) then Refraction phenomenon leads us to 7 colours splitting from a single colour "White " light
Madhav
so the sun rays r of White colour
Madhav
Taurus in astronomy and horoscope?
Yasser Reply
how to put E=MC2
Gospel Reply
What Do You Mean By How To Put?
Adam
What Do You Mean By How To Put?
Adam
What Do You Mean By "How To Put E=MC2?
Adam
yep
Gospel
Hi guys
Samuel
i mean how NASA came to know the mass and diameters of Stars.how?
Gospel
how did they do using E=MC2
Gospel
thats my questioning
Gospel
that's easy formula's derivation
Madhav
why all planets revolving orbits are nearly in equal inclination?
Kartik Reply
***medium.com/starts-with-a-bang/ask-ethan-82-why-are-the-planets-all-in-the-same-plane-4470245c8743
rishabh
dependent on the mass
Madhav
no
Janak
I think because of the Suns gravity pull ,😕😕
Samuel
Samuel,. it's but obvious
Madhav

Get the best Astronomy course in your pocket!





Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask