<< Chapter < Page Chapter >> Page >

Astronomers today have much more efficient electronic detectors to record astronomical images. Most often, these are charge-coupled devices (CCDs) , which are similar to the detectors used in video camcorders or in digital cameras (like the one more and more students have on their cell phones) (see [link] ). In a CCD, photons of radiation hitting any part of the detector generate a stream of charged particles (electrons) that are stored and counted at the end of the exposure. Each place where the radiation is counted is called a pixel (picture element), and modern detectors can count the photons in millions of pixels (megapixels, or MPs).

Charge-coupled devices (ccds).

(a) A photograph shows a hand holding a technical device in tweezers; the device has flat metallic-appearing rectangles with colorful images. (b) A photograph shows a technician touching and observing a square object with 21 metallic-appearing squares.
(a) This CCD is a mere 300-micrometers thick (thinner than a human hair) yet holds more than 21 million pixels. (b) This matrix of 42 CCDs serves the Kepler telescope. (credit a: modification of work by US Department of Energy; credit b: modification of work by NASA and Ball Aerospace)

Because CCDs typically record as much as 60–70% of all the photons that strike them, and the best silicon and infrared CCDs exceed 90% sensitivity, we can detect much fainter objects. Among these are many small moons around the outer planets, icy dwarf planets beyond Pluto, and dwarf galaxies of stars. CCDs also provide more accurate measurements of the brightness of astronomical objects than photography, and their output is digital—in the form of numbers that can go directly into a computer for analysis.

Infrared observations

Observing the universe in the infrared band of the spectrum presents some additional challenges. The infrared region extends from wavelengths near 1 micrometer (µm), which is about the long wavelength sensitivity limit of both CCDs and photography, to 100 micrometers or longer. Recall from the discussion on radiation and spectra that infrared is “heat radiation” (given off at temperatures that we humans are comfortable with). The main challenge to astronomers using infrared is to distinguish between the tiny amount of heat radiation that reaches Earth from stars and galaxies, and the much greater heat radiated by the telescope itself and our planet’s atmosphere.

Typical temperatures on Earth’s surface are near 300 K, and the atmosphere through which observations are made is only a little cooler. According to Wien’s law (from the chapter on Radiation and Spectra ), the telescope, the observatory, and even the sky are radiating infrared energy with a peak wavelength of about 10 micrometers. To infrared eyes, everything on Earth is brightly aglow—including the telescope and camera ( [link] ). The challenge is to detect faint cosmic sources against this sea of infrared light. Another way to look at this is that an astronomer using infrared must always contend with the situation that a visible-light observer would face if working in broad daylight with a telescope and optics lined with bright fluorescent lights.

Infrared eyes.

Two side-by-side photographs show a person with a black plastic bag covering his hands. The left-image is visible light and only the plastic bag can be seen over the hands; the right image is infrared and the hand and fingers are easily visible although covered by visible-light-blocking plastic.
Infrared waves can penetrate places in the universe from which light is blocked, as shown in this infrared image where the plastic bag blocks visible light but not infrared. (credit: NASA/JPL-Caltech/R. Hurt (SSC))

To solve this problem, astronomers must protect the infrared detector from nearby radiation, just as you would shield photographic film from bright daylight. Since anything warm radiates infrared energy, the detector must be isolated in very cold surroundings; often, it is held near absolute zero (1 to 3 K) by immersing it in liquid helium. The second step is to reduce the radiation emitted by the telescope structure and optics, and to block this heat from reaching the infrared detector.

Spectroscopy

Spectroscopy is one of the astronomer’s most powerful tools, providing information about the composition, temperature, motion, and other characteristics of celestial objects. More than half of the time spent on most large telescopes is used for spectroscopy.

The many different wavelengths present in light can be separated by passing them through a spectrometer to form a spectrum. The design of a simple spectrometer is illustrated in [link] . Light from the source (actually, the image of a source produced by the telescope) enters the instrument through a small hole or narrow slit, and is collimated (made into a beam of parallel rays) by a lens. The light then passes through a prism, producing a spectrum: different wavelengths leave the prism in different directions because each wavelength is bent by a different amount when it enters and leaves the prism. A second lens placed behind the prism focuses the many different images of the slit or entrance hole onto a CCD or other detecting device. This collection of images (spread out by color) is the spectrum that astronomers can then analyze at a later point. As spectroscopy spreads the light out into more and more collecting bins, fewer photons go into each bin, so either a larger telescope is needed or the integration time must be greatly increased—usually both.

Prism spectrometer.

Diagram showing a prism spectrometer. At left is a convex lens. Parallel rays of light enter the lens from the left and then converge at the focus. A thin slit has been placed at the focus. The light rays pass through the slit and strike a smaller convex lens which is used to collimate (make parallel again) the rays. This collimated light beam then enters a triangular prism where the light is refracted and separated into its rainbow of colors. The rainbow of light then enters another lens in order to focus the image onto a photographic plate or CCD camera.
The light from the telescope is focused on a slit. A prism (or grating) disperses the light into a spectrum, which is then photographed or recorded electronically.

In practice, astronomers today are more likely to use a different device, called a grating , to disperse the spectrum. A grating is a piece of material with thousands of grooves on its surface. While it functions completely differently, a grating, like a prism, also spreads light out into a spectrum.

Visible-light detectors include the human eye, photographic film, and charge-coupled devices (CCDs). Detectors that are sensitive to infrared radiation must be cooled to very low temperatures since everything in and near the telescope gives off infrared waves. A spectrometer disperses the light into a spectrum to be recorded for detailed analysis.

Questions & Answers

How to determine the velocity of light?
PARTHIB Reply
what is mean by Big Bang
block Reply
What it means by Big Bang is how the world was made and came in to exist
Glory
The Big Bang Is The Best Explanation For What We See Around Us, And For The Origin Of The Universe, All Our Evidence Points To The Big Bang Theory..... And Was Proposed By A Belgian Priest.....
Adam
if the big bang theory is really true than i would like to know what exploded and where did it came from and where did the energy came from and where come from for the matter to expand into amd where did the organization come from and where did the information come from.........
Gospel
Some say that on the otherside of the singularity was a black hole. They say that at the other end of all black holes is another universe. Hence the multiverse. It's all theoretical at this point but less than a 100 years ago people believed that there was only 1 galaxy in the universe. So why
Rafael
should there be only 1 universe?
Rafael
universe.
Rafael
is astronomy a hard subject to learn because i want to be an astronomer
FNAF Reply
No it not it just takes time and effort to learn
Glory
Why are they so far away that their light takes hundreds of millions of years to reach us on earth?
LadyCatTM Reply
what is comets , astroids ,
Sumit Reply
comets are broken pieces of dust frozen debris Asteroids are big soiled pieces of Ice that burst into flames when it in to earth's atmosphere
Glory
hi, I am yamini, I am in class 8 but very much interested in astronomy and go to NASA, what are the subjects in which I can master and lead to NASA.
yamini Reply
Hello Yamini, Im Ken and I'm avery intrested in joining the NASA too. Is nice to meet you.
Ken
very*
Ken
nice to meet u ken
yamini
What I know about the subjects is that you have to be a master on science and math, also if you know about aviation is better too
Ken
I read that the Russian language is very important, is not a requirement but it's like an extra point!
Ken
yeah like physics, chemistry and maths, they are my most favorite.
yamini
than you can go free of cost
Arush
Yes, That's right!
Ken
how
yamini
Oh! Free of cost?
Ken
hello yamini nice to meet you
Burak
wow from NASA ur so lucky
FNAF
hello yamini nice to meet you
block
what is time
Abdul Reply
Time is relative
mrunal
pls elaborate
sakshi
the clear defination.I know that.
Abdul
In planet mars there the life exits or not and is there water there
Eshwarsa Reply
see till now nothing can be found as u know that the curiosity rover has struck in mars
Maya
It has been proven that there are water molecules on Mars but not enough that most lifeforms could thrive upon.
Ariana
There are huge amounts of water in the ice caps and under the surface. The surface and chemistry indicate that Mars had cosiderable amounts of water on its surface in the past.
Julius
what is your opinion about the theory of Vedas about modern physics..
Manish Reply
i think in some ways vedas are also correct but not everytime
Maya
I agree
sakshi
hmm even I agree
Samuel
Is there any patened theory about time relativitg in growth and development?
donot Reply
some astronomer's says that there is no alien exist but why search for extra terrestrial intelligence center is established
Eshwarsa Reply
No One Knows That For Absolute Fact, The Universe Is Too Huge To Have Any Type Of Idea About What Exist In The Far Reaches Of Our Universe.....
Adam
Check Out The Drake Equation.....
Adam
their should be aliens as like ours there would be another planet
Maya
which could have existed life on it
Maya
adam i want to ask a question
Maya
can kepler 1st law be applied on all the planets of the universe
Maya
hello, anyone home?
Denise
guys listen we cannot ever find aliens because our technology is not that great.we don't know whether they exist or no because our universe is very large . Just for an example;even if we spot out aliens we cannot reach there because lot of time must have been passed and before us reaching there
Samuel
what if their species or existence might get vanished our have been extinct!! getting my point
Samuel
sjskskfhjkkktewqqw and try?
Lanika Reply
what is this ?
Samuel
hi I am Samuel from India mumbai
Samuel
nice to meet you
Samuel
thats my question, what is this?
penzias and wilson's a discovery of the cosmic microwave background is a nice example of scientific serendipity-something that is found by chance but turns out to have a positive outcome
Jacqueline Reply
how should I make my carrier in astronomy
Ayush Reply
I think that Newton's third law is not appropriate if any also thinks like this please reply me
Ayush
Can you explain your reasoning
Huh
why u think so
joseph
yes Ayush u are right
Yoganshu
I think when we apply force to a object it start moving but , a/c to Newton's third law every action has equal and opposite reaction,so object should also exert equal force on us and it should not move due to balanced force
Ayush
if I am not right then reply me
Ayush
no
Zack
because of friction that opposes that force and help us to move ahead
Manish
but this is not satisfied as third law say another thing
Ayush
you are telling why object moves
Ayush
you have to think a/c to third law
Ayush
its because of its mass
Maya
because it is applying equal and opposite force but also our mass is also less in comparison to the object
Maya
which is why we cant move the object but it can make move us
Maya
manish is too correct in his place because we need to apply force which would overcome the frictional force
Maya
My dear friends, can u plz tell me that among u guys who are in the field of cosmology
Madhav Reply
😢I am not there in cosmology
Samuel
Just A Science Fan.....
Adam
Adam even I am 😥😅😅😂😂
Samuel
I am also not in cosmology but I am just a fan or we can say science and part of NASA is my dream
Yoganshu
yoganshu Arya same here
Samuel
you are from which country
Yoganshu
hi yoganshu
Samuel
India
Samuel
which state
Samuel
I am also from India
Yoganshu
from delhi
Yoganshu
and u...?
Yoganshu
I am from Maharashtra
Samuel
from which state?
Yoganshu
You are a ASTRONOMER ...
Yoganshu
or a scientist..
Yoganshu
or just a member
Yoganshu
hi
Samuel
8
Samuel
Hi
Amit
hi
Alebiosu
Practice Key Terms 1

Get the best Astronomy course in your pocket!





Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask