<< Chapter < Page Chapter >> Page >

Cosmology of the Local Universe: http://irfu.cea.fr/cosmography. Narrated flythrough of maps of galaxies showing the closer regions of the universe (17:35).

Gravitational Lensing: https://www.youtube.com/watch?v=4Z71RtwoOas. Video from Fermilab, with Dr. Don Lincoln (7:14).

How Galaxies Were Cooked from the Primordial Soup: https://www.youtube.com/watch?v=wqNNCm7SNyw. A 2013 public talk by Dr. Sandra Faber of Lick Observatory about the evolution of galaxies; part of the Silicon Valley Astronomy Lecture Series (1:19:33).

Hubble Extreme Deep Field Pushes Back Frontiers of Time and Space: https://www.youtube.com/watch?v=gu_VhzhlqGw. Brief 2012 video (2:42).

Looking Deeply into the Universe in 3-D: https://www.eso.org/public/videos/eso1507a/. 2015 ESOCast video on how the Very Large Telescopes are used to explore the Hubble Ultra-Deep Field and learn more about the faintest and most distant galaxies (5:12).

Millennium Simulation: http://wwwmpa.mpa-garching.mpg.de/galform/virgo/millennium. A supercomputer in Germany follows the evolution of a representative large box as the universe evolves.

Movies of flying through the large-scale local structure: http://www.ifa.hawaii.edu/~tully/. By Brent Tully.

Shedding Light on Dark Matter: https://www.youtube.com/watch?v=bZW_B9CC-gI. 2008 TED talk on galaxies and dark matter by physicist Patricia Burchat (17:08).

Sloan Digital Sky Survey overview movies: http://astro.uchicago.edu/cosmus/projects/sloanmovie/.

Virtual Universe: https://www.youtube.com/watch?v=SY0bKE10ZDM. An MIT model of a section of universe evolving, with dark matter included (4:11).

When Two Galaxies Collide: http://www.openculture.com/2009/04/when_galaxies_collide.html. Computer simulation, which stops at various points and shows a Hubble image of just such a system in nature (1:37).

Collaborative group activities

  1. Suppose you developed a theory to account for the evolution of New York City. Have your group discuss whether it would resemble the development of structure in the universe (as we have described it in this chapter). What elements of your model for NYC resemble the astronomers’ model for the growth of structure in the universe? Which elements do not match?
  2. Most astronomers believe that dark matter exists and is a large fraction of the total matter in the universe. At the same time, most astronomers do not believe that UFOs are evidence that we are being visited by aliens from another world. Yet astronomers have never actually seen either dark matter or a UFO. Why do you think one idea is widely accepted by scientists and the other is not? Which idea do you think is more believable? Give your reasoning.
  3. Someone in your group describes the redshift surveys of galaxies to a friend, who says he’s never heard of a bigger waste of effort. Who cares, he asks, about the large-scale structure of the universe? What is your group’s reaction, and what reasons could you come up with for putting money into figuring out how the universe is organized?
  4. The leader of a small but very wealthy country is obsessed by maps. She has put together a fabulous collection of Earth maps, purchased all the maps of other planets that astronomers have assembled, and now wants to commission the best possible map of the entire universe. Your group is selected to advise her. What sort of instruments and surveys should she invest in to produce a good map of the cosmos? Be as specific as you can.
  5. Download a high-resolution image of a rich galaxy cluster from the Hubble Space Telescope (see the list of gravitational lens news stories in the “For Further Exploration” section). See if your group can work together to identify gravitational arcs, the images of distant background galaxies distorted by the mass of the cluster. How many can you find? Can you identify any multiple images of the same background galaxy? (If anyone in the group gets really interested, there is a Citizen Science project called Spacewarps, where you can help astronomers identify gravitational lenses on their images: https://spacewarps.org.)
  6. You get so excited about gravitational lensing that you begin to talk about it with an intelligent friend who has not yet taken an astronomy course. After hearing you out, this friend starts to worry. He says, “If gravitational lenses can distort quasar images, sometimes creating multiple, or ghost, images of the same object, then how can we trust any point of light in the sky to be real? Maybe many of the stars we see are just ghost images or lensed images too!” Have your group discuss how to respond. (Hint: Think about the path that the light of a quasar took on its way to us and the path the light of a typical star takes.)
  7. The 8.4-meter Large Synoptic Survey Telescope (LSST), currently under construction atop Cerro Pachón, a mountain in northern Chile, will survey the entire sky with its 3.2-gigapixel camera every few days, looking for transient, or temporary, objects that make a brief appearance in the sky before fading from view, including asteroids and Kuiper belt objects in our solar system, and supernovae and other explosive high-energy events in the distant universe. When it’s fully operating sometime after 2021, the LSST will produce up to 30 terabytes of data every night. (A terabyte is 1000 gigabytes, which is the unit you probably use to rate your computer or memory stick capacity.) With your group, consider what you think might be some challenges of dealing with that quantity of data every night in a scientifically productive but efficient way. Can you propose any solutions to those challenges?
  8. Quasars are rare now but were much more numerous when the universe was about one-quarter of its current age. The total star formation taking place in galaxies across the universe peaked at about the same redshift. Does your group think this is a coincidence? Why or why not?
  9. One way to see how well the ideas in astronomy (like those in this chapter) have penetrated popular culture is to see whether you can find astronomical words in the marketplace. A short web search for the term “dark matter” turns up both a brand of coffee and a brand of “muscle growth accelerator” with that name. How many other terms used in this chapter can your group find in the world of products? (What’s a really popular type of Android cell phone, for example?)
  10. What’s your complete address in the universe? Group members should write out their full address, based on the information in this chapter (and the rest of the book). After your postal code and country, you may want to add continent, planet, planetary system, galaxy, etc. Then each group member should explain this address to a family member or student not taking astronomy.

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask