<< Chapter < Page Chapter >> Page >

Exoplanetary systems

As we search for exoplanets, we don’t expect to find only one planet per star. Our solar system has eight major planets, half a dozen dwarf planets, and millions of smaller objects orbiting the Sun. The evidence we have of planetary systems in formation also suggest that they are likely to produce multi-planet systems.

The first planetary system was found around the star Upsilon Andromedae in 1999 using the Doppler method, and many others have been found since then (about 2600 as of 2016). If such exoplanetary system are common, let’s consider which systems we expect to find in the Kepler transit data.

A planet will transit its star only if Earth lies in the plane of the planet’s orbit. If the planets in other systems do not have orbits in the same plane, we are unlikely to see multiple transiting objects. Also, as we have noted before, Kepler was sensitive only to planets with orbital periods less than about 4 years. What we expect from Kepler data, then, is evidence of coplanar planetary systems confined to what would be the realm of the terrestrial planets in our solar system.

In fact, today we have data on about 2600 such exoplanet systems. Many have only two known planets, but a few have as many as five. For the most part, these are very compact systems with most of their planets closer to their star than Mercury is to the Sun. The figure below shows one of the largest exoplanet systems: that of the star called Kepler-62 ( [link] ). Our solar system is shown to the same scale, for comparison.

Exoplanet system kepler-62, with the solar system shown to the same scale.

An image of Exoplanet System Kepler-62. At the top of the image is a representation of the Kepler-62 system, showing the orbits of 5 planets, 3 of which are within a region labeled “Habitable zone”. At the bottom of the image is a representation of the solar system, with the orbits of Mercury, Venus, Earth, and Mars shown.
The green areas are the “habitable zones,” the range of distance from the star where surface temperatures are likely to be consistent with liquid water. (credit: modification of work by NASA/Ames/JPL-Caltech)

All but one of the planets in the K-62 system are larger than Earth. These are super-Earths, and one of them (62d) is in the size range of a mini-Neptune, where it is likely to be largely gaseous. The smallest planet in this system is about the size of Mars. The three inner planets orbit very close to their star, and only the outer two have orbits larger than Mercury in our system. The green areas represent each star’s “habitable zone,” which is the distance from the star where we calculate that surface temperatures would be consistent with liquid water. The Kepler-62 habitable zone is much smaller than that of the Sun because the star is intrinsically fainter.

With closely spaced systems like this, the planets can interact gravitationally with each other. The result is that the observed transits occur a few minutes earlier or later than would be predicted from simple orbits. These gravitational interactions have allowed the Kepler scientists to calculate masses for the planets, providing another way to learn about exoplanets.

Kepler has discovered some interesting and unusual planetary systems. For example, most astronomers expected planets to be limited to single stars. But we have found planets orbiting close double stars, so that the planet would see two suns in its sky, like those of the fictional planet Tatooine in the Star Wars films. At the opposite extreme, planets can orbit one star of a wide, double-star system without major interference from the second star.

Key concepts and summary

Although the Kepler mission is finding thousands of new exoplanets, these are limited to orbital periods of less than 400 days and sizes larger than Mars. Still, we can use the Kepler discoveries to extrapolate the distribution of planets in our Galaxy. The data so far imply that planets like Earth are the most common type of planet, and that there may be 100 billion Earth-size planets around Sun-like stars in the Galaxy. About 2600 planetary systems have been discovered around other stars. In many of them, planets are arranged differently than in our solar system.

Questions & Answers

which planet orbits the closest?
Alastair Reply
What is the angle between Earth's equator and the Celestial equator? In the drawing they seem pretty similar. Thank you for this study resource.
Chuck Reply
Describe the spectrum of each of the following: starlight reflected by dust, a star behind invisible interstellar gas, and an emission nebula
shakila Reply
If the Oort cloud contains 1012 comets, and ten new comets are discovered coming close to the Sun each year, what percentage of the comets have been “used up” since the beginning of the solar system?
Day Reply
what is spectral type of sun
Akshat Reply
what everyone asking here? and who answers for them?
Shashi Reply
highest frequency wavelengh
Kathy Reply
may I know which Kingdom shows largest diversity
Arpita Reply
or students should post tough likely questions
Adepitan Reply
for example questions on demand functions and etc
Adepitan Reply
are there no ways we can get tough questions to answer
Adepitan Reply
What do you mean?
Amman Reply
excellent book bro.... keep it up.... if I find any query i will ask u.... thanks
rao Reply
Hi! I'm a bit confused, what is this
Sizakele Reply
They hsve new set of questions every time they test us. i do revision with the tutorials they give us answer extra questions from their moodle site but every time i write exams there will be few not even 10% of the questions are they. most of the time i guess. They give us three lectures who do not
Phumza Reply
Practice Key Terms 2

Get the best Astronomy course in your pocket!





Source:  OpenStax, Astronomy. OpenStax CNX. Apr 12, 2017 Download for free at http://cnx.org/content/col11992/1.13
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Astronomy' conversation and receive update notifications?

Ask