<< Chapter < Page Chapter >> Page >

Areolar tissue shows little specialization. It contains all the cell types and fibers previously described and is distributed in a random, web-like fashion. It fills the spaces between muscle fibers, surrounds blood and lymph vessels, and supports organs in the abdominal cavity. Areolar tissue underlies most epithelia and represents the connective tissue component of epithelial membranes, which are described further in a later section.

Reticular tissue is a mesh-like, supportive framework for soft organs such as lymphatic tissue, the spleen, and the liver ( [link] ). Reticular cells produce the reticular fibers that form the network onto which other cells attach. It derives its name from the Latin reticulus , which means “little net.”

Reticular tissue

This figure shows reticular tissue alongside a micrograph. The diagram shows a series of small, oval cells embedded in a yellowish matrix. Thin reticular fibers spread and crisscross throughout the matrix. In the micrograph, the reticular fibers are thin, dark, and seem to travel between the many deeply stained cells.
This is a loose connective tissue made up of a network of reticular fibers that provides a supportive framework for soft organs. LM × 1600. (Micrograph provided by the Regents of University of Michigan Medical School © 2012)

Dense connective tissue

Dense connective tissue contains more collagen fibers than does loose connective tissue. As a consequence, it displays greater resistance to stretching. There are two major categories of dense connective tissue: regular and irregular. Dense regular connective tissue fibers are parallel to each other, enhancing tensile strength and resistance to stretching in the direction of the fiber orientations. Ligaments and tendons are made of dense regular connective tissue, but in ligaments not all fibers are parallel. Dense regular elastic tissue contains elastin fibers in addition to collagen fibers, which allows the ligament to return to its original length after stretching. The ligaments in the vocal folds and between the vertebrae in the vertebral column are elastic.

In dense irregular connective tissue, the direction of fibers is random. This arrangement gives the tissue greater strength in all directions and less strength in one particular direction. In some tissues, fibers crisscross and form a mesh. In other tissues, stretching in several directions is achieved by alternating layers where fibers run in the same orientation in each layer, and it is the layers themselves that are stacked at an angle. The dermis of the skin is an example of dense irregular connective tissue rich in collagen fibers. Dense irregular elastic tissues give arterial walls the strength and the ability to regain original shape after stretching ( [link] ).

Dense connective tissue

Part A shows a diagram of regular dense connective tissue alongside a micrograph. The tissue is composed of parallel, thread-like collagen fibers running vertically through the diagram. Between the vertical fibers, several dark, oval shaped fibroblast nuclei are visible. In the micrograph, the whitish collagen strands run horizontally. Several dark purple fibroblast nuclei are embedded in the lightly stained matrix. Part B shows a diagram of irregular dense connective tissue on the left and a micrograph on the right. In the diagram, the collagen fibers are arranged in bundles that curve and loop throughout the tissue. The fibers within a bundle run parallel to each other, but separate bundles crisscross throughout the tissue. Because of this, the irregular dense connective tissue appears less organized than the regular dense connective tissue. This is also evident in the micrograph, where the white collagen bundles radiate throughout the micrograph in all directions. The fibroblasts are visible as red stained cells with dark purple nuclei.
(a) Dense regular connective tissue consists of collagenous fibers packed into parallel bundles. (b) Dense irregular connective tissue consists of collagenous fibers interwoven into a mesh-like network. From top, LM × 1000, LM × 200. (Micrographs provided by the Regents of University of Michigan Medical School © 2012)

Disorders of the…

Connective tissue: tendinitis

Your opponent stands ready as you prepare to hit the serve, but you are confident that you will smash the ball past your opponent. As you toss the ball high in the air, a burning pain shoots across your wrist and you drop the tennis racket. That dull ache in the wrist that you ignored through the summer is now an unbearable pain. The game is over for now.

After examining your swollen wrist, the doctor in the emergency room announces that you have developed wrist tendinitis. She recommends icing the tender area, taking non-steroidal anti-inflammatory medication to ease the pain and to reduce swelling, and complete rest for a few weeks. She interrupts your protests that you cannot stop playing. She issues a stern warning about the risk of aggravating the condition and the possibility of surgery. She consoles you by mentioning that well known tennis players such as Venus and Serena Williams and Rafael Nadal have also suffered from tendinitis related injuries.

What is tendinitis and how did it happen? Tendinitis is the inflammation of a tendon, the thick band of fibrous connective tissue that attaches a muscle to a bone. The condition causes pain and tenderness in the area around a joint. On rare occasions, a sudden serious injury will cause tendinitis. Most often, the condition results from repetitive motions over time that strain the tendons needed to perform the tasks.

Persons whose jobs and hobbies involve performing the same movements over and over again are often at the greatest risk of tendinitis. You hear of tennis and golfer’s elbow, jumper's knee, and swimmer’s shoulder. In all cases, overuse of the joint causes a microtrauma that initiates the inflammatory response. Tendinitis is routinely diagnosed through a clinical examination. In case of severe pain, X-rays can be examined to rule out the possibility of a bone injury. Severe cases of tendinitis can even tear loose a tendon. Surgical repair of a tendon is painful. Connective tissue in the tendon does not have abundant blood supply and heals slowly.

While older adults are at risk for tendinitis because the elasticity of tendon tissue decreases with age, active people of all ages can develop tendinitis. Young athletes, dancers, and computer operators; anyone who performs the same movements constantly is at risk for tendinitis. Although repetitive motions are unavoidable in many activities and may lead to tendinitis, precautions can be taken that can lessen the probability of developing tendinitis. For active individuals, stretches before exercising and cross training or changing exercises are recommended. For the passionate athlete, it may be time to take some lessons to improve technique. All of the preventive measures aim to increase the strength of the tendon and decrease the stress put on it. With proper rest and managed care, you will be back on the court to hit that slice-spin serve over the net.

Questions & Answers

what is heparin
Lawrence Reply
why is it anatomy
Tenacious Reply
hello
ASIMENU
hi
asare
hws life
Tenacious
anatomy is the scientific study of the body's structure
Lawrence
great
Lawrence
good night
Kaaya
anatomy is the study of form, physiology is the study of function
Patrick
anatomy is the study of the structure of the body and the physical relationship between it constituent part
Florence
what is heparin
Lawrence
what is the trunk
Tenacious
trunk is define as a person's or animal's body apart from the limp and head
Lawrence
The trunk is part of the axial skeleton
Patrick
supine or dorsal position is used in clinical setting when patient is placed in position, to examine what?
Dinyando Reply
what do nurses/doctors detect when a patient is placed on dorsal position?
Dinyando
What is coroid process?
kelvin Reply
describe special situation with implications in medical ethics.
kelvin
what is the difference between anatomy and physiology
Dinyando Reply
anatomy is the study of human body . and physiology is the study of the brain
Maryiam
ok
Varun
hi friends
Varun
hi!
kelvin
hello
Maryiam
sorry I cant see the full question
Jessica Reply
what was the question?
evelyna
what is spine as a bone marking?
John
similar to a crest but raised more
evelyna
pointed process
evelyna
slender
evelyna
pointed projection i meant
evelyna
what fills the hallow space in the middle of bones? thanks
John
marrow
evelyna
bone marrow
evelyna
hey you gotta read a book
evelyna
i just happen to take this bone chapter in my book last week so i remember
evelyna
yeah i should. how about the correct match of the number of tarsal, metatarsal and phalanges?
John
10, fingers and toes, u know this
Patrick
what is the difference between basal laminal and basal membrane
Nartey Reply
I think they r the same
Patrick
If one is missing the opsin which detects wavelengths of approximately 560 nm what color would they be unable to see?
Alicia Reply
how do I explain into details the epithelial tissue
Sir Reply
Epithelial tissues line the outer surfaces of organs and blood vessels throughout the body, as well as the inner surfaces of cavities in many internal organs. An example is the epidermis, the outermost layer of the skin. There are three principal shapes of epithelialcell: squamous, columnar, and cub
DJ
thank you
Sir
explain how the intestinal irritation results in diarrhoea
Sir
what is cerebrospinal fluid
nitesha Reply
Cerebrospinal fluid is a clear, colorless body fluid found in the brain and spinal cord. It is produced by the specialised ependymal cells in the choroid plexuses of the ventricles of the brain, and absorbed in the arachnoid granulations.
DJ
cerebrospinal fluid is the fluid present in the brain and spinal cord
olusoga
it is whitish in colour
olusoga
what are the function of the blood
Hannah Reply
to transport oxygen in hemoglobin and nutrients
Thembani
ok
Hannah
describe the pulmonary circulation
Hannah
Which of the following structures contains membranes with mucus glands and blood vessels to help humidify and warm air?
Sheika Reply
thoracic pump for blood, and lymphatic flow for mucus membranes .
Rugiatu
explanation shortly about organizaton of human body
Maulidi Reply
the human body is the entire structure of a human being.it is composed of many different types of cells that together create tissues and subsequently organ systems.they ensure homeostasis and viability of the human body
Chundu
which is the largest body organ?
Carine Reply
skin
Vinod
hello everyone what is blood carcinoma?
Khabat Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask