<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Discuss the components that make up the thoracic cage
  • Identify the parts of the sternum and define the sternal angle
  • Discuss the parts of a rib and rib classifications

The thoracic cage (rib cage) forms the thorax (chest) portion of the body. It consists of the 12 pairs of ribs with their costal cartilages and the sternum ( [link] ). The ribs are anchored posteriorly to the 12 thoracic vertebrae (T1–T12). The thoracic cage protects the heart and lungs.

Thoracic cage

This figure shows the skeletal structure of the rib cage. The left panel shows the anterior view of the sternum and the right panel shows the anterior panel of the sternum including the entire rib cage.
The thoracic cage is formed by the (a) sternum and (b) 12 pairs of ribs with their costal cartilages. The ribs are anchored posteriorly to the 12 thoracic vertebrae. The sternum consists of the manubrium, body, and xiphoid process. The ribs are classified as true ribs (1–7) and false ribs (8–12). The last two pairs of false ribs are also known as floating ribs (11–12).

Sternum

The sternum is the elongated bony structure that anchors the anterior thoracic cage. It consists of three parts: the manubrium, body, and xiphoid process. The manubrium    is the wider, superior portion of the sternum. The top of the manubrium has a shallow, U-shaped border called the jugular (suprasternal) notch    . This can be easily felt at the anterior base of the neck, between the medial ends of the clavicles. The clavicular notch    is the shallow depression located on either side at the superior-lateral margins of the manubrium. This is the site of the sternoclavicular joint, between the sternum and clavicle. The first ribs also attach to the manubrium.

The elongated, central portion of the sternum is the body. The manubrium and body join together at the sternal angle    , so called because the junction between these two components is not flat, but forms a slight bend. The second rib attaches to the sternum at the sternal angle. Since the first rib is hidden behind the clavicle, the second rib is the highest rib that can be identified by palpation. Thus, the sternal angle and second rib are important landmarks for the identification and counting of the lower ribs. Ribs 3–7 attach to the sternal body.

The inferior tip of the sternum is the xiphoid process    . This small structure is cartilaginous early in life, but gradually becomes ossified starting during middle age.

Ribs

Each rib is a curved, flattened bone that contributes to the wall of the thorax. The ribs articulate posteriorly with the T1–T12 thoracic vertebrae, and most attach anteriorly via their costal cartilages to the sternum. There are 12 pairs of ribs. The ribs are numbered 1–12 in accordance with the thoracic vertebrae.

Parts of a typical rib

The posterior end of a typical rib is called the head of the rib    (see [link] ). This region articulates primarily with the costal facet located on the body of the same numbered thoracic vertebra and to a lesser degree, with the costal facet located on the body of the next higher vertebra. Lateral to the head is the narrowed neck of the rib    . A small bump on the posterior rib surface is the tubercle of the rib    , which articulates with the facet located on the transverse process of the same numbered vertebra. The remainder of the rib is the body of the rib    (shaft). Just lateral to the tubercle is the angle of the rib    , the point at which the rib has its greatest degree of curvature. The angles of the ribs form the most posterior extent of the thoracic cage. In the anatomical position, the angles align with the medial border of the scapula. A shallow costal groove    for the passage of blood vessels and a nerve is found along the inferior margin of each rib.

Rib classifications

The bony ribs do not extend anteriorly completely around to the sternum. Instead, each rib ends in a costal cartilage    . These cartilages are made of hyaline cartilage and can extend for several inches. Most ribs are then attached, either directly or indirectly, to the sternum via their costal cartilage (see [link] ). The ribs are classified into three groups based on their relationship to the sternum.

Ribs 1–7 are classified as true ribs    (vertebrosternal ribs). The costal cartilage from each of these ribs attaches directly to the sternum. Ribs 8–12 are called false ribs    (vertebrochondral ribs). The costal cartilages from these ribs do not attach directly to the sternum. For ribs 8–10, the costal cartilages are attached to the cartilage of the next higher rib. Thus, the cartilage of rib 10 attaches to the cartilage of rib 9, rib 9 then attaches to rib 8, and rib 8 is attached to rib 7. The last two false ribs (11–12) are also called floating ribs    (vertebral ribs). These are short ribs that do not attach to the sternum at all. Instead, their small costal cartilages terminate within the musculature of the lateral abdominal wall.

Chapter review

The thoracic cage protects the heart and lungs. It is composed of 12 pairs of ribs with their costal cartilages and the sternum. The ribs are anchored posteriorly to the 12 thoracic vertebrae. The sternum consists of the manubrium, body, and xiphoid process. The manubrium and body are joined at the sternal angle, which is also the site for attachment of the second ribs.

Ribs are flattened, curved bones and are numbered 1–12. Posteriorly, the head of the rib articulates with the costal facets located on the bodies of thoracic vertebrae and the rib tubercle articulates with the facet located on the vertebral transverse process. The angle of the ribs forms the most posterior portion of the thoracic cage. The costal groove in the inferior margin of each rib carries blood vessels and a nerve. Anteriorly, each rib ends in a costal cartilage. True ribs (1–7) attach directly to the sternum via their costal cartilage. The false ribs (8–12) either attach to the sternum indirectly or not at all. Ribs 8–10 have their costal cartilages attached to the cartilage of the next higher rib. The floating ribs (11–12) are short and do not attach to the sternum or to another rib.

Questions & Answers

Explain the major features and properties of the cell membrane
Robina Reply
contants ofa lipid bilayers w the enbedded proteins it is faction of the cell membaren
bariise
it is made up of protein,fat and a small portion of carbohydrates. it is semipermeable but impermeable to uncharged water molecules.
Chidiebere
Describe an experiment to verify the law of constant composition
Ssekamatte
What are blood vessels of will's circle
Madu Reply
vertebral arteries and cerebral arteries
Chidiebere
What are sutures of cranial cavity ?
Madu Reply
there are four. the coronal, sagittal, squamous and lambhoidal sutured
Chidiebere
structure of a cell
Robina
pelvic cavity contents?
unimarwat Reply
ilium ,ischium ,pubis
Madu
but that is the three parts of the hip bone
Chidiebere
Describe the muscular skeletal system in terms of definition.. Skeleton Apendicular skeleton Axial skeleton Joints
Sherrine Reply
the basic framework of body made and cartilage is called skeleton skeleton which form limbs is called appendicular skeleton skeleton which form main axis of body is called axial skeleton the points at two or more bones meets is called joints
unimarwat
write short notes on ligaments,curves and moverment of vertebral column.
mutesi Reply
cranial nerves notes
unimarwat
what is the Analysis
ROHIT Reply
what is Anatomy
ROHIT Reply
it's a organs and bouns reading
AJITH
Cutting Up
Nonie
Cutting Up
Nonie
to dissect
Nonie
what usually cause blood pressurae
Abdullateef Reply
too much salt in the diet
Abuusu
older age
Abuusu
Even family history of high blood pressure
Abuusu
yes
Yaqub
too much salt in the diet
Yaqub
stress is the leading factor
Richard
smoking and too much alcohol consumption
Annu
obesity can also cause hypertension
Yaqub
high temperature of the body high salt of the body
Drs
how does the temperature affect the blood pressure?
Chidiebere
sex
Onavwie
What sex.?
Arshad
Male
Vikas
i mearnt gender,there's increased blood pressure in male than female
Onavwie
guys, read the question, involuntary pumping of heart causes the blood pressure in the arteries, he has not asked about high or low BP.
Jess
explain the cellular mechanism that produces tetanus and summation
Jenica Reply
epithelial cells polerity
jitendra Reply
tissues
Deepak
demonstrate the fluid replacement in the body
John Reply
the red blood cells is in the long bones or flat bones?
isbii
as age increases, the bone elongates .. will the joint vanish?
Sushruth Reply
what is anatomy?
Ivy Reply
structure
Allonda
discuss the organization of the body
Mwila Reply
cell-tissue-organ-organ system -organism
Richard
Richard shaman
unimarwat

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask