<< Chapter < Page Chapter >> Page >

In contrast to the disorders characterized by coagulation failure is thrombocytosis, also mentioned earlier, a condition characterized by excessive numbers of platelets that increases the risk for excessive clot formation, a condition known as thrombosis    . A thrombus    (plural = thrombi) is an aggregation of platelets, erythrocytes, and even WBCs typically trapped within a mass of fibrin strands. While the formation of a clot is normal following the hemostatic mechanism just described, thrombi can form within an intact or only slightly damaged blood vessel. In a large vessel, a thrombus will adhere to the vessel wall and decrease the flow of blood, and is referred to as a mural thrombus. In a small vessel, it may actually totally block the flow of blood and is termed an occlusive thrombus. Thrombi are most commonly caused by vessel damage to the endothelial lining, which activates the clotting mechanism. These may include venous stasis, when blood in the veins, particularly in the legs, remains stationary for long periods. This is one of the dangers of long airplane flights in crowded conditions and may lead to deep vein thrombosis or atherosclerosis, an accumulation of debris in arteries. Thrombophilia, also called hypercoagulation, is a condition in which there is a tendency to form thrombosis. This may be familial (genetic) or acquired. Acquired forms include the autoimmune disease lupus, immune reactions to heparin, polycythemia vera, thrombocytosis, sickle cell disease, pregnancy, and even obesity. A thrombus can seriously impede blood flow to or from a region and will cause a local increase in blood pressure. If flow is to be maintained, the heart will need to generate a greater pressure to overcome the resistance.

When a portion of a thrombus breaks free from the vessel wall and enters the circulation, it is referred to as an embolus    . An embolus that is carried through the bloodstream can be large enough to block a vessel critical to a major organ. When it becomes trapped, an embolus is called an embolism. In the heart, brain, or lungs, an embolism may accordingly cause a heart attack, a stroke, or a pulmonary embolism. These are medical emergencies.

Among the many known biochemical activities of aspirin is its role as an anticoagulant. Aspirin (acetylsalicylic acid) is very effective at inhibiting the aggregation of platelets. It is routinely administered during a heart attack or stroke to reduce the adverse effects. Physicians sometimes recommend that patients at risk for cardiovascular disease take a low dose of aspirin on a daily basis as a preventive measure. However, aspirin can also lead to serious side effects, including increasing the risk of ulcers. A patient is well advised to consult a physician before beginning any aspirin regimen.

A class of drugs collectively known as thrombolytic agents can help speed up the degradation of an abnormal clot. If a thrombolytic agent is administered to a patient within 3 hours following a thrombotic stroke, the patient’s prognosis improves significantly. However, some strokes are not caused by thrombi, but by hemorrhage. Thus, the cause must be determined before treatment begins. Tissue plasminogen activator is an enzyme that catalyzes the conversion of plasminogen to plasmin, the primary enzyme that breaks down clots. It is released naturally by endothelial cells but is also used in clinical medicine. New research is progressing using compounds isolated from the venom of some species of snakes, particularly vipers and cobras, which may eventually have therapeutic value as thrombolytic agents.

Chapter review

Hemostasis is the physiological process by which bleeding ceases. Hemostasis involves three basic steps: vascular spasm, the formation of a platelet plug, and coagulation, in which clotting factors promote the formation of a fibrin clot. Fibrinolysis is the process in which a clot is degraded in a healing vessel. Anticoagulants are substances that oppose coagulation. They are important in limiting the extent and duration of clotting. Inadequate clotting can result from too few platelets, or inadequate production of clotting factors, for instance, in the genetic disorder hemophilia. Excessive clotting, called thrombosis, can be caused by excessive numbers of platelets. A thrombus is a collection of fibrin, platelets, and erythrocytes that has accumulated along the lining of a blood vessel, whereas an embolus is a thrombus that has broken free from the vessel wall and is circulating in the bloodstream.

View these animations to explore the intrinsic, extrinsic, and common pathways that are involved the process of coagulation. The coagulation cascade restores hemostasis by activating coagulation factors in the presence of an injury. How does the endothelium of the blood vessel walls prevent the blood from coagulating as it flows through the blood vessels?

Clotting factors flow through the blood vessels in their inactive state. The endothelium does not have thrombogenic tissue factor to activate clotting factors.

Got questions? Get instant answers now!

Questions & Answers

action of gluteus medius and minimus
Green Reply
Lateral rotation of the hip joint
Hertzo
Briefly explain location of ecg on a patient
Prince Reply
it is a machine that gives a graphical representation of heart beat
Nani
Briefly explain location of ecg leads on a patient?
Prince
in ecg we use electrical leads over the chest ,ancle and wrist
Nani
what is the anatomical and function difference between paravertebral and prevertebral ganglia ?
Rada Reply
types of tissue in human
Preety Reply
charactetistic Of cartilaginous tissue
Preety
what is theRecurrent infection?
pankaj Reply
what do you mean about recurrent infection
pankaj
Recurrent or persistent infection is a manifestation of primary immuno deficiency
Kedha's
weakens the immune system, allowing infections and other health problems to occur more easily
Kedha's
lysis of RBC
Abdirizack
What is barometric pressure
Kedha's Reply
what is the agglutination advantage
Gopal Reply
the functions of the liver
Nana Reply
it produces bile juice which is used to make the food smaller
Kedha's
it also plays an important role in conversion of amino acid into urea
Komal
it also has role in gluconeogenesis in which amino acids and lipids convert into glucose.
Komal
during fetal life it's a center for hemopoiesis (formation of blood cells)
Komal
it filters, or removes, harmful substances from the blood
Kedha's
It stores nutrients, such as vitamins and iron,for the body
Kedha's
what is the largest gland in human body
Shahid Reply
liver
rachna
correct
Said
correct
dominic
thyroid gland
Kedha's
thyroid is largest endocrine gland
Komal
describe microscopic structures of the kidney
Nana Reply
kidney is covered by fibrous capsule, consists of an outer cortex and inner medulla with medullary pyramids. The microscopic structure is seen as 1-2 millions of nephrons and collecting tubule.
Komal
identify the four major tissue types
Binkheir Reply
connective epithelial
Nana
two ramining
Binkheir
muscle nervous
Nana
epithelial, connective, muscle, and nervous tissue
Mel
tell me about urine formation
Nana Reply
it includes three steps. ultrafiltration selective reabsorption tubular secretion
Komal
ultrafiltration also known as glomerular filteration. All solutes up to 4nm size and water can freely pass through the filtering membrane.
Komal
selective reabsorption : About more than 99% of water ,electrolytes and other substances are reabsorbed by the tubular epithelial cells. The reabsorbed subtances move into interstitial fluid and then into blood of peritubular capillaries .
Komal
The substances like water ,glucose,amino acids and electrolyte are reabsorbed
Komal
tublar secretion: the substances are transported from blood to again into the renal tubules
Komal
and then those are excreted out as urine
Komal
internal and external structures of the kidney
Nana Reply
how the kidney works
Nana
on the bases of pressure and filtration
Said
General
Nana
excretion of wasts, role in hb, role in vit D synthesis
Said
care to explain?
Okoye
yes plx
Nana
the differences between eukaryotic and prokaryotic
Binkheir Reply
eukaryotic don't have nucleus and prokaryotic have nucleus.
Emmmanuel
no, the eukaryotic has well enveloped nucleus and prokaryotic has nucleus without membrane which is also known as nucleoid
Komal
Eukaryotes have organized nucleus and prokaryotes don't have organized nucleus
Kedha's
what is staphylococcus?
Binkheir Reply
Its a bacteria
kannan
they also cause staph infections
Nana
on the skin
Nana
the definition of staphylococcus?
Binkheir
pathogenic organism
Frank
Spherical shaped bacteria arranged in different rows causing infections
PL
type of bacteria
Kedha's
gram negative or positive?
Peter
gram positive
Komal

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask