<< Chapter < Page Chapter >> Page >

Appendicular control

The lateral corticospinal tract    is composed of the fibers that cross the midline at the pyramidal decussation (see [link] ). The axons cross over from the anterior position of the pyramids in the medulla to the lateral column of the spinal cord. These axons are responsible for controlling appendicular muscles.

This influence over the appendicular muscles means that the lateral corticospinal tract is responsible for moving the muscles of the arms and legs. The ventral horn in both the lower cervical spinal cord and the lumbar spinal cord both have wider ventral horns, representing the greater number of muscles controlled by these motor neurons. The cervical enlargement    is particularly large because there is greater control over the fine musculature of the upper limbs, particularly of the fingers. The lumbar enlargement    is not as significant in appearance because there is less fine motor control of the lower limbs.

Axial control

The anterior corticospinal tract    is responsible for controlling the muscles of the body trunk (see [link] ). These axons do not decussate in the medulla. Instead, they remain in an anterior position as they descend the brain stem and enter the spinal cord. These axons then travel to the spinal cord level at which they synapse with a lower motor neuron. Upon reaching the appropriate level, the axons decussate, entering the ventral horn on the opposite side of the spinal cord from which they entered. In the ventral horn, these axons synapse with their corresponding lower motor neurons. The lower motor neurons are located in the medial regions of the ventral horn, because they control the axial muscles of the trunk.

Because movements of the body trunk involve both sides of the body, the anterior corticospinal tract is not entirely contralateral. Some collateral branches of the tract will project into the ipsilateral ventral horn to control synergistic muscles on that side of the body, or to inhibit antagonistic muscles through interneurons within the ventral horn. Through the influence of both sides of the body, the anterior corticospinal tract can coordinate postural muscles in broad movements of the body. These coordinating axons in the anterior corticospinal tract are often considered bilateral, as they are both ipsilateral and contralateral.

Watch this video to learn more about the descending motor pathway for the somatic nervous system. The autonomic connections are mentioned, which are covered in another chapter. From this brief video, only some of the descending motor pathway of the somatic nervous system is described. Which division of the pathway is described and which division is left out?

Extrapyramidal controls

Other descending connections between the brain and the spinal cord are called the extrapyramidal system    . The name comes from the fact that this system is outside the corticospinal pathway, which includes the pyramids in the medulla. A few pathways originating from the brain stem contribute to this system.

Questions & Answers

what is Tendon
Vivian Reply
compare and contrast the activities carried by endocrine system and nervous system
Kevin Reply
a brief explanation to sliding filament theory. is troponin atrracted/attached to tropomyosin?
Albert Reply
which organ in the body is most important?
George Reply
What is the importance of anatomy and physiology in nursing
Albert Reply
What is the lumbar
sufi Reply
hi! is there any difference between fever and Typhoid's fever?
Dems Reply
heart disease
Aliyu Reply
what is a bilayer?
Duffy Reply
what is cell specialisation
chimwemwe Reply
It's the process by which genetic cells change into specific cells
Nathan
increase stomach motilty
Rimsha Reply
blood pressure and temperature
Meghan Reply
response of acute hemorrhage thermoregulation
giwa Reply
name two physiological variable controlled by negative feedback
George Reply
how does a ligand gated ion channel work?
Kwamboka Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask