<< Chapter < Page Chapter >> Page >

T cell-mediated immune responses

The primary cells that control the adaptive immune response are the lymphocytes, the T and B cells. T cells are particularly important, as they not only control a multitude of immune responses directly, but also control B cell immune responses in many cases as well. Thus, many of the decisions about how to attack a pathogen are made at the T cell level, and knowledge of their functional types is crucial to understanding the functioning and regulation of adaptive immune responses as a whole.

T lymphocytes recognize antigens based on a two-chain protein receptor. The most common and important of these are the alpha-beta T cell receptors ( [link] ).

Alpha-beta t cell receptor

This figure shows the alpha beta T cell receptor in the plasma membrane.
Notice the constant and variable regions of each chain, anchored by the transmembrane region.

There are two chains in the T cell receptor, and each chain consists of two domains. The variable region domain    is furthest away from the T cell membrane and is so named because its amino acid sequence varies between receptors. In contrast, the constant region domain    has less variation. The differences in the amino acid sequences of the variable domains are the molecular basis of the diversity of antigens the receptor can recognize. Thus, the antigen-binding site of the receptor consists of the terminal ends of both receptor chains, and the amino acid sequences of those two areas combine to determine its antigenic specificity. Each T cell produces only one type of receptor and thus is specific for a single particular antigen.

Antigens

Antigens on pathogens are usually large and complex, and consist of many antigenic determinants. An antigenic determinant    (epitope) is one of the small regions within an antigen to which a receptor can bind, and antigenic determinants are limited by the size of the receptor itself. They usually consist of six or fewer amino acid residues in a protein, or one or two sugar moieties in a carbohydrate antigen. Antigenic determinants on a carbohydrate antigen are usually less diverse than on a protein antigen. Carbohydrate antigens are found on bacterial cell walls and on red blood cells (the ABO blood group antigens). Protein antigens are complex because of the variety of three-dimensional shapes that proteins can assume, and are especially important for the immune responses to viruses and worm parasites. It is the interaction of the shape of the antigen and the complementary shape of the amino acids of the antigen-binding site that accounts for the chemical basis of specificity ( [link] ).

Antigenic determinants

This figure shows three T cells and the antigenic determinants in the center.
A typical protein antigen has multiple antigenic determinants, shown by the ability of T cells with three different specificities to bind to different parts of the same antigen.

Antigen processing and presentation

Although [link] shows T cell receptors interacting with antigenic determinants directly, the mechanism that T cells use to recognize antigens is, in reality, much more complex. T cells do not recognize free-floating or cell-bound antigens as they appear on the surface of the pathogen. They only recognize antigen on the surface of specialized cells called antigen-presenting cells. Antigens are internalized by these cells. Antigen processing is a mechanism that enzymatically cleaves the antigen into smaller pieces. The antigen fragments are then brought to the cell’s surface and associated with a specialized type of antigen-presenting protein known as a major histocompatibility complex (MHC)    molecule. The MHC is the cluster of genes that encode these antigen-presenting molecules. The association of the antigen fragments with an MHC molecule on the surface of a cell is known as antigen presentation    and results in the recognition of antigen by a T cell. This association of antigen and MHC occurs inside the cell, and it is the complex of the two that is brought to the surface. The peptide-binding cleft is a small indentation at the end of the MHC molecule that is furthest away from the cell membrane; it is here that the processed fragment of antigen sits. MHC molecules are capable of presenting a variety of antigens, depending on the amino acid sequence, in their peptide-binding clefts. It is the combination of the MHC molecule and the fragment of the original peptide or carbohydrate that is actually physically recognized by the T cell receptor ( [link] ).

Questions & Answers

Which signaling molecule is most likely responsible for an increase in digestive activity?
Tonya Reply
Homeostatasis return to the body to a healthy state after a stressful stimuli by producing
Ofosu Reply
There are some people suffering serious injured what will we do in doing X-ray?
Jefford Reply
observe bone arrangements n associated structures like soft tissues muscles in general the radiographical changes
Terry
epithelial tissue lines blood vessels
Laura Reply
what is difference between anabolism and catabolism in simple language
Chinaza Reply
anabolism simply means building up while catabolism breaking down
Maaruf
explain respiratory centers
Tharshana Reply
which enzyme help in excretion of bile
Sakshi Reply
how conversion of Beta-carotiene into vitamin-A takes place
Sakshi
best reference books for anatomy pls suggest that
Sakshi
what is gross anatomy
Saroj Reply
The study of large structure of the body
Mablean
what is scrotum
Dakshit Reply
a bag of skin near the penis which contains the testicles
Mablean
hi
Sardar
its me Sardar from kpk pakistan
Sardar
Why are you on my digits
Mablean
hi
Kryme
how does it work?
Uriah Reply
I want to know the fertilization process in human
Nana Reply
Which plane divides the body into right and left parts
Kaeze
sagittal plane
Irvin
Thank you
Kaeze
Homestatic regulations usually involves a (n) _ that detects a particular stimulus, and a(n) _that respond to the stimulus by communicating with a (n) _whose activity has an effect on the same stimulus.
Kaeze
A cell is producing proteins to be transported out of that cell. They will be processed on ribosomes that are
Kaeze
what are diseases in the bood
Azoyenime Reply
Haemophilia
Aliyu
right hypochondriac rision how meain word
Ganesh Reply
Diabetes insipidus or diabetes mellitus would most likely be indicated by ________.
Ganesh
oral cavity how miean
Ganesh Reply
oral cavity how mean what
Suresh
seems to me every one is here a doctor and worse part is that even they donot know what to ask.
Muhammad
they know what to ask the problem is how to ask it.too much broken english.
George
dear George ongeche I think if they ask these kind questions and telling themselves as HCPs or medical student's .these are the basic ones go ask something more interesting .
Muhammad
what is blood red
Ahmad Reply

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask