<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the structure of the lactating breast
  • Summarize the process of lactation
  • Explain how the composition of breast milk changes during the first days of lactation and in the course of a single feeding

Lactation is the process by which milk is synthesized and secreted from the mammary glands of the postpartum female breast in response to an infant sucking at the nipple. Breast milk provides ideal nutrition and passive immunity for the infant, encourages mild uterine contractions to return the uterus to its pre-pregnancy size (i.e., involution), and induces a substantial metabolic increase in the mother, consuming the fat reserves stored during pregnancy.

Structure of the lactating breast

Mammary glands are modified sweat glands. The non-pregnant and non-lactating female breast is composed primarily of adipose and collagenous tissue, with mammary glands making up a very minor proportion of breast volume. The mammary gland is composed of milk-transporting lactiferous ducts, which expand and branch extensively during pregnancy in response to estrogen, growth hormone, cortisol, and prolactin. Moreover, in response to progesterone, clusters of breast alveoli bud from the ducts and expand outward toward the chest wall. Breast alveoli are balloon-like structures lined with milk-secreting cuboidal cells, or lactocytes, that are surrounded by a net of contractile myoepithelial cells. Milk is secreted from the lactocytes, fills the alveoli, and is squeezed into the ducts. Clusters of alveoli that drain to a common duct are called lobules; the lactating female has 12–20 lobules organized radially around the nipple. Milk drains from lactiferous ducts into lactiferous sinuses that meet at 4 to 18 perforations in the nipple, called nipple pores. The small bumps of the areola (the darkened skin around the nipple) are called Montgomery glands. They secrete oil to cleanse the nipple opening and prevent chapping and cracking of the nipple during breastfeeding.

The process of lactation

The pituitary hormone prolactin    is instrumental in the establishment and maintenance of breast milk supply. It also is important for the mobilization of maternal micronutrients for breast milk.

Near the fifth week of pregnancy, the level of circulating prolactin begins to increase, eventually rising to approximately 10–20 times the pre-pregnancy concentration. We noted earlier that, during pregnancy, prolactin and other hormones prepare the breasts anatomically for the secretion of milk. The level of prolactin plateaus in late pregnancy, at a level high enough to initiate milk production. However, estrogen, progesterone, and other placental hormones inhibit prolactin-mediated milk synthesis during pregnancy. It is not until the placenta is expelled that this inhibition is lifted and milk production commences.

After childbirth, the baseline prolactin level drops sharply, but it is restored for a 1-hour spike during each feeding to stimulate the production of milk for the next feeding. With each prolactin spike, estrogen and progesterone also increase slightly.

Questions & Answers

a brief explanation to sliding filament theory. is troponin atrracted/attached to tropomyosin?
Albert Reply
which organ in the body is most important?
George Reply
What is the importance of anatomy and physiology in nursing
Albert Reply
What is the lumbar
sufi Reply
hi! is there any difference between fever and Typhoid's fever?
Dems Reply
heart disease
Aliyu Reply
what is a bilayer?
Duffy Reply
what is cell specialisation
chimwemwe Reply
It's the process by which genetic cells change into specific cells
Nathan
increase stomach motilty
Rimsha Reply
blood pressure and temperature
Meghan Reply
response of acute hemorrhage thermoregulation
giwa Reply
name two physiological variable controlled by negative feedback
George Reply
how does a ligand gated ion channel work?
Kwamboka Reply
wat organs contain in a spinal cavity
Nanunda Reply
name two physiological variable controlled by negative feedback
Nanunda
Which of these physiological changes would not be considered part of the sympathetic fight-or-flight response? A increased heart rate B increased sweating C dilated pupils D increased stomach motility
Umar Reply
D. increased stomach motility
Walidah
d
Almaas
d
wendy
c
William

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask