<< Chapter < Page Chapter >> Page >
By the end of this section, you will be able to:
  • Describe the function of satellite cells
  • Define fibrosis
  • Explain which muscle has the greatest regeneration ability

Most muscle tissue of the body arises from embryonic mesoderm. Paraxial mesodermal cells adjacent to the neural tube form blocks of cells called somites    . Skeletal muscles, excluding those of the head and limbs, develop from mesodermal somites, whereas skeletal muscle in the head and limbs develop from general mesoderm. Somites give rise to myoblasts. A myoblast    is a muscle-forming stem cell that migrates to different regions in the body and then fuse(s) to form a syncytium, or myotube    . As a myotube is formed from many different myoblast cells, it contains many nuclei, but has a continuous cytoplasm. This is why skeletal muscle cells are multinucleate, as the nucleus of each contributing myoblast remains intact in the mature skeletal muscle cell. However, cardiac and smooth muscle cells are not multinucleate because the myoblasts that form their cells do not fuse.

Gap junctions develop in the cardiac and single-unit smooth muscle in the early stages of development. In skeletal muscles, ACh receptors are initially present along most of the surface of the myoblasts, but spinal nerve innervation causes the release of growth factors that stimulate the formation of motor end-plates and NMJs. As neurons become active, electrical signals that are sent through the muscle influence the distribution of slow and fast fibers in the muscle.

Although the number of muscle cells is set during development, satellite cells help to repair skeletal muscle cells. A satellite cell    is similar to a myoblast because it is a type of stem cell; however, satellite cells are incorporated into muscle cells and facilitate the protein synthesis required for repair and growth. These cells are located outside the sarcolemma and are stimulated to grow and fuse with muscle cells by growth factors that are released by muscle fibers under certain forms of stress. Satellite cells can regenerate muscle fibers to a very limited extent, but they primarily help to repair damage in living cells. If a cell is damaged to a greater extent than can be repaired by satellite cells, the muscle fibers are replaced by scar tissue in a process called fibrosis    . Because scar tissue cannot contract, muscle that has sustained significant damage loses strength and cannot produce the same amount of power or endurance as it could before being damaged.

Smooth muscle tissue can regenerate from a type of stem cell called a pericyte    , which is found in some small blood vessels. Pericytes allow smooth muscle cells to regenerate and repair much more readily than skeletal and cardiac muscle tissue. Similar to skeletal muscle tissue, cardiac muscle does not regenerate to a great extent. Dead cardiac muscle tissue is replaced by scar tissue, which cannot contract. As scar tissue accumulates, the heart loses its ability to pump because of the loss of contractile power. However, some minor regeneration may occur due to stem cells found in the blood that occasionally enter cardiac tissue.

Career connections

Physical therapist

As muscle cells die, they are not regenerated but instead are replaced by connective tissue and adipose tissue, which do not possess the contractile abilities of muscle tissue. Muscles atrophy when they are not used, and over time if atrophy is prolonged, muscle cells die. It is therefore important that those who are susceptible to muscle atrophy exercise to maintain muscle function and prevent the complete loss of muscle tissue. In extreme cases, when movement is not possible, electrical stimulation can be introduced to a muscle from an external source. This acts as a substitute for endogenous neural stimulation, stimulating the muscle to contract and preventing the loss of proteins that occurs with a lack of use.

Physiotherapists work with patients to maintain muscles. They are trained to target muscles susceptible to atrophy, and to prescribe and monitor exercises designed to stimulate those muscles. There are various causes of atrophy, including mechanical injury, disease, and age. After breaking a limb or undergoing surgery, muscle use is impaired and can lead to disuse atrophy. If the muscles are not exercised, this atrophy can lead to long-term muscle weakness. A stroke can also cause muscle impairment by interrupting neural stimulation to certain muscles. Without neural inputs, these muscles do not contract and thus begin to lose structural proteins. Exercising these muscles can help to restore muscle function and minimize functional impairments. Age-related muscle loss is also a target of physical therapy, as exercise can reduce the effects of age-related atrophy and improve muscle function.

The goal of a physiotherapist is to improve physical functioning and reduce functional impairments; this is achieved by understanding the cause of muscle impairment and assessing the capabilities of a patient, after which a program to enhance these capabilities is designed. Some factors that are assessed include strength, balance, and endurance, which are continually monitored as exercises are introduced to track improvements in muscle function. Physiotherapists can also instruct patients on the proper use of equipment, such as crutches, and assess whether someone has sufficient strength to use the equipment and when they can function without it.

Chapter review

Muscle tissue arises from embryonic mesoderm. Somites give rise to myoblasts and fuse to form a myotube. The nucleus of each contributing myoblast remains intact in the mature skeletal muscle cell, resulting in a mature, multinucleate cell. Satellite cells help to repair skeletal muscle cells. Smooth muscle tissue can regenerate from stem cells called pericytes, whereas dead cardiac muscle tissue is replaced by scar tissue. Aging causes muscle mass to decrease and be replaced by noncontractile connective tissue and adipose tissue.

Questions & Answers

what are the three types of blood stem and explanation how they form in steps
Henry Reply
Most body movement is involuntary (true or false)
Ruma Reply
true
Ashiish
True
Masud
I think true.......
Ihsan
true
odeh
true
Atul
true
Serhana
all of the following substance move in in and out of cell except
Mohd Reply
all of the following substance move in and out of cells except
Mohd
Which signaling molecule is most likely responsible for an increase in digestive activity?
Tonya Reply
Hi I think it is DNA
libim
Homeostatasis return to the body to a healthy state after a stressful stimuli by producing
Ofosu Reply
There are some people suffering serious injured what will we do in doing X-ray?
Jefford Reply
observe bone arrangements n associated structures like soft tissues muscles in general the radiographical changes
Terry
epithelial tissue lines blood vessels
Laura Reply
what is difference between anabolism and catabolism in simple language
Chinaza Reply
anabolism simply means building up while catabolism breaking down
Maaruf
building up and breaking down
odeh
explain respiratory centers
Tharshana Reply
which enzyme help in excretion of bile
Sakshi Reply
how conversion of Beta-carotiene into vitamin-A takes place
Sakshi
best reference books for anatomy pls suggest that
Sakshi
what is gross anatomy
Saroj Reply
The study of large structure of the body
Mablean
macroscopic anatomy (Gross anatomy)
odeh
manipulation of structures without aid of microscope due to their size
libim
what is scrotum
Dakshit Reply
a bag of skin near the penis which contains the testicles
Mablean
hi
Sardar
its me Sardar from kpk pakistan
Sardar
Why are you on my digits
Mablean
hi
Kryme
it is part if male organ that hold testis in position it also regulates temperature
libim
how does it work?
Uriah Reply
I want to know the fertilization process in human
Nana Reply
Which plane divides the body into right and left parts
Kaeze
sagittal plane
Irvin
Thank you
Kaeze
Homestatic regulations usually involves a (n) _ that detects a particular stimulus, and a(n) _that respond to the stimulus by communicating with a (n) _whose activity has an effect on the same stimulus.
Kaeze
A cell is producing proteins to be transported out of that cell. They will be processed on ribosomes that are
Kaeze
what are diseases in the bood
Azoyenime Reply
Haemophilia
Aliyu

Get the best Anatomy & Physiology course in your pocket!





Source:  OpenStax, Anatomy & Physiology. OpenStax CNX. Feb 04, 2016 Download for free at http://legacy.cnx.org/content/col11496/1.8
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Anatomy & Physiology' conversation and receive update notifications?

Ask