<< Chapter < Page Chapter >> Page >

Vertical stretch or compression

In the equation f ( x ) = m x , the m is acting as the vertical stretch    or compression of the identity function. When m is negative, there is also a vertical reflection of the graph. Notice in [link] that multiplying the equation of f ( x ) = x by m stretches the graph of f by a factor of m units if m > 1 and compresses the graph of f by a factor of m units if 0 < m < 1. This means the larger the absolute value of m , the steeper the slope.

This graph shows seven versions of the function, f of x = x on an x, y coordinate plane. The x-axis runs from negative 8 to 8. The y-axis runs from negative 8 to 8. Seven multi-colored lines run through the point (0, 0). Starting with the lines in the top right quadrant and moving clockwise, the first line is f of x = 3 times x and has a slope of 3, the next line is f of x = 2 times x which has a slope of 2, the next line is f of x = x which has a slope of 1, the next line is f of x = x divided by 2 which has a slope of .5. The last line in this quadrant is f of x = x divided by 3 which has a slope of one third x. In the bottom right quadrant moving clockwise, the first line is f of x = negative x divided by 2, which has a slope of negative one half, the middle line is f of x = negative x which has a slope of negative 1, and the last line is f of x = negative 2 times x which has a slope of  negative 2.
Vertical stretches and compressions and reflections on the function f ( x ) = x

Vertical shift

In f ( x ) = m x + b , the b acts as the vertical shift    , moving the graph up and down without affecting the slope of the line. Notice in [link] that adding a value of b to the equation of f ( x ) = x shifts the graph of f a total of b units up if b is positive and | b | units down if b is negative.

This graph shows six versions of the function, f of x = x, on an x, y coordinate plane. The x-axis runs from negative 8 to 8, and the y axis runs negative 8 to 8. There are five lines parallel to each other. The first line extends from the bottom left quadrant to the upper right quadrant on the coordinate plane. This line shows f of x = x plus 4 which has a slope of 1 and a y-intercept at 4. The next line also extends from the bottom left quadrant to the upper right quadrant and shows f of x = x plus 2 which has a slope of 1 and a y-intercept at 2. The next and middle line, extends from the lower left quadrant, through the center of the graph at point (0, 0) to the upper right quadrant and shows f of x = x. The next line extends from the lower left quadrant, through the lower right quadrant to the upper right quadrant. This line shows f of x = x minus 2 which has a slope of 1 and a y-intercept at -2. The last line extends from the lower left quadrant, through the lower right quadrant to the upper right quadrant.This line shows f of x = x minus 4 which has a slope of 1 and a y-intercept at -4.
This graph illustrates vertical shifts of the function f ( x ) = x .

Using vertical stretches or compressions along with vertical shifts is another way to look at identifying different types of linear functions. Although this may not be the easiest way to graph this type of function, it is still important to practice each method.

Given the equation of a linear function, use transformations to graph the linear function in the form f ( x ) = m x + b .

  1. Graph f ( x ) = x .
  2. Vertically stretch or compress the graph by a factor m .
  3. Shift the graph up or down b units.

Graphing by using transformations

Graph f ( x ) = 1 2 x 3 using transformations.

The equation for the function shows that m = 1 2 so the identity function is vertically compressed by 1 2 . The equation for the function also shows that b = 3 so the identity function is vertically shifted down 3 units. First, graph the identity function, and show the vertical compression as in [link] .

This graph shows two functions on an x, y coordinate plane. One shows an increasing function of y = x divided by 2 that runs through the points (0, 0) and (2, 1). The second shows an increasing function of y = x and runs through the points (0, 0) and (1, 1)).
The function, y = x , compressed by a factor of 1 2

Then show the vertical shift as in [link] .

This graph shows two functions on an x, y coordinate plane. The first is an increasing function of y = x divided by 2 and runs through the points (0, 0) and (2, 1).  The second shows an increasing function of y = x divided by 2 minus 3 and passes through the points (0, 3) and (2, -2).  An arrow pointing downward from the first function  to the second function reveals the vertical shift.
The function y = 1 2 x , shifted down 3 units
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Graph f ( x ) = 4 + 2 x using transformations.

This graph shows three functions on an x, y coordinate plane. One shows an increasing function y = x that passes through points (0, 0) and (2, 2).  A second shows an increasing function y = 2 times x that passes through the points (0, 0) and (2, 4).  The third is an increasing function y = 2 times x plus 4 and passes through the points (0, 4) and (2, 8).
Got questions? Get instant answers now!

In [link] , could we have sketched the graph by reversing the order of the transformations?

No. The order of the transformations follows the order of operations. When the function is evaluated at a given input, the corresponding output is calculated by following the order of operations. This is why we performed the compression first. For example, following the order: Let the input be 2.

f ( 2 ) = 1 2 ( 2 ) 3 = 1 3 = −2

Writing the equation for a function from the graph of a line

Earlier, we wrote the equation for a linear function from a graph. Now we can extend what we know about graphing linear functions to analyze graphs a little more closely. Begin by taking a look at [link] . We can see right away that the graph crosses the y -axis at the point ( 0 , 4 ) so this is the y -intercept.

This graph shows the function f of x = 2 times x plus 4 on an x, y coordinate plane. The x-axis runs from negative 10 to 10. The y-axis runs from negative 10 to 10. This function passes through the points (-2, 0) and (0, 4).

Then we can calculate the slope by finding the rise and run. We can choose any two points, but let’s look at the point ( 2 , 0 ) . To get from this point to the y- intercept, we must move up 4 units (rise) and to the right 2 units (run). So the slope must be

m = rise run = 4 2 = 2

Substituting the slope and y- intercept into the slope-intercept form of a line gives

Questions & Answers

Three charges q_{1}=+3\mu C, q_{2}=+6\mu C and q_{3}=+8\mu C are located at (2,0)m (0,0)m and (0,3) coordinates respectively. Find the magnitude and direction acted upon q_{2} by the two other charges.Draw the correct graphical illustration of the problem above showing the direction of all forces.
Kate Reply
To solve this problem, we need to first find the net force acting on charge q_{2}. The magnitude of the force exerted by q_{1} on q_{2} is given by F=\frac{kq_{1}q_{2}}{r^{2}} where k is the Coulomb constant, q_{1} and q_{2} are the charges of the particles, and r is the distance between them.
Muhammed
What is the direction and net electric force on q_{1}= 5µC located at (0,4)r due to charges q_{2}=7mu located at (0,0)m and q_{3}=3\mu C located at (4,0)m?
Kate Reply
what is the change in momentum of a body?
Eunice Reply
what is a capacitor?
Raymond Reply
Capacitor is a separation of opposite charges using an insulator of very small dimension between them. Capacitor is used for allowing an AC (alternating current) to pass while a DC (direct current) is blocked.
Gautam
A motor travelling at 72km/m on sighting a stop sign applying the breaks such that under constant deaccelerate in the meters of 50 metres what is the magnitude of the accelerate
Maria Reply
please solve
Sharon
8m/s²
Aishat
What is Thermodynamics
Muordit
velocity can be 72 km/h in question. 72 km/h=20 m/s, v^2=2.a.x , 20^2=2.a.50, a=4 m/s^2.
Mehmet
A boat travels due east at a speed of 40meter per seconds across a river flowing due south at 30meter per seconds. what is the resultant speed of the boat
Saheed Reply
50 m/s due south east
Someone
which has a higher temperature, 1cup of boiling water or 1teapot of boiling water which can transfer more heat 1cup of boiling water or 1 teapot of boiling water explain your . answer
Ramon Reply
I believe temperature being an intensive property does not change for any amount of boiling water whereas heat being an extensive property changes with amount/size of the system.
Someone
Scratch that
Someone
temperature for any amount of water to boil at ntp is 100⁰C (it is a state function and and intensive property) and it depends both will give same amount of heat because the surface available for heat transfer is greater in case of the kettle as well as the heat stored in it but if you talk.....
Someone
about the amount of heat stored in the system then in that case since the mass of water in the kettle is greater so more energy is required to raise the temperature b/c more molecules of water are present in the kettle
Someone
definitely of physics
Haryormhidey Reply
how many start and codon
Esrael Reply
what is field
Felix Reply
physics, biology and chemistry this is my Field
ALIYU
field is a region of space under the influence of some physical properties
Collete
what is ogarnic chemistry
WISDOM Reply
determine the slope giving that 3y+ 2x-14=0
WISDOM
Another formula for Acceleration
Belty Reply
a=v/t. a=f/m a
IHUMA
innocent
Adah
pratica A on solution of hydro chloric acid,B is a solution containing 0.5000 mole ofsodium chlorid per dm³,put A in the burret and titrate 20.00 or 25.00cm³ portion of B using melting orange as the indicator. record the deside of your burret tabulate the burret reading and calculate the average volume of acid used?
Nassze Reply
how do lnternal energy measures
Esrael
Two bodies attract each other electrically. Do they both have to be charged? Answer the same question if the bodies repel one another.
JALLAH Reply
No. According to Isac Newtons law. this two bodies maybe you and the wall beside you. Attracting depends on the mass och each body and distance between them.
Dlovan
Are you really asking if two bodies have to be charged to be influenced by Coulombs Law?
Robert
like charges repel while unlike charges atttact
Raymond
What is specific heat capacity
Destiny Reply
Specific heat capacity is a measure of the amount of energy required to raise the temperature of a substance by one degree Celsius (or Kelvin). It is measured in Joules per kilogram per degree Celsius (J/kg°C).
AI-Robot
specific heat capacity is the amount of energy needed to raise the temperature of a substance by one degree Celsius or kelvin
ROKEEB
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask