<< Chapter < Page Chapter >> Page >

Graph the hyperbola given by the equation x 2 144 y 2 81 = 1. Identify and label the vertices, co-vertices, foci, and asymptotes.

vertices: ( ± 12 , 0 ) ; co-vertices: ( 0 , ± 9 ) ; foci: ( ± 15 , 0 ) ; asymptotes: y = ± 3 4 x ;

Got questions? Get instant answers now!

Graphing hyperbolas not centered at the origin

Graphing hyperbolas centered at a point ( h , k ) other than the origin is similar to graphing ellipses centered at a point other than the origin. We use the standard forms ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 for horizontal hyperbolas, and ( y k ) 2 a 2 ( x h ) 2 b 2 = 1 for vertical hyperbolas. From these standard form equations we can easily calculate and plot key features of the graph: the coordinates of its center, vertices, co-vertices, and foci; the equations of its asymptotes; and the positions of the transverse and conjugate axes.

Given a general form for a hyperbola centered at ( h , k ) , sketch the graph.

  1. Convert the general form to that standard form. Determine which of the standard forms applies to the given equation.
  2. Use the standard form identified in Step 1 to determine the position of the transverse axis; coordinates for the center, vertices, co-vertices, foci; and equations for the asymptotes.
    1. If the equation is in the form ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 , then
      • the transverse axis is parallel to the x -axis
      • the center is ( h , k )
      • the coordinates of the vertices are ( h ± a , k )
      • the coordinates of the co-vertices are ( h , k ± b )
      • the coordinates of the foci are ( h ± c , k )
      • the equations of the asymptotes are y = ± b a ( x h ) + k
    2. If the equation is in the form ( y k ) 2 a 2 ( x h ) 2 b 2 = 1 , then
      • the transverse axis is parallel to the y -axis
      • the center is ( h , k )
      • the coordinates of the vertices are ( h , k ± a )
      • the coordinates of the co-vertices are ( h ± b , k )
      • the coordinates of the foci are ( h , k ± c )
      • the equations of the asymptotes are y = ± a b ( x h ) + k
  3. Solve for the coordinates of the foci using the equation c = ± a 2 + b 2 .
  4. Plot the center, vertices, co-vertices, foci, and asymptotes in the coordinate plane and draw a smooth curve to form the hyperbola.

Graphing a hyperbola centered at ( h , k ) given an equation in general form

Graph the hyperbola    given by the equation 9 x 2 4 y 2 36 x 40 y 388 = 0. Identify and label the center, vertices, co-vertices, foci, and asymptotes.

Start by expressing the equation in standard form. Group terms that contain the same variable, and move the constant to the opposite side of the equation.

( 9 x 2 36 x ) ( 4 y 2 + 40 y ) = 388

Factor the leading coefficient of each expression.

9 ( x 2 4 x ) 4 ( y 2 + 10 y ) = 388

Complete the square twice. Remember to balance the equation by adding the same constants to each side.

9 ( x 2 4 x + 4 ) 4 ( y 2 + 10 y + 25 ) = 388 + 36 100

Rewrite as perfect squares.

9 ( x 2 ) 2 4 ( y + 5 ) 2 = 324

Divide both sides by the constant term to place the equation in standard form.

( x 2 ) 2 36 ( y + 5 ) 2 81 = 1

The standard form that applies to the given equation is ( x h ) 2 a 2 ( y k ) 2 b 2 = 1 , where a 2 = 36 and b 2 = 81 , or a = 6 and b = 9. Thus, the transverse axis is parallel to the x -axis. It follows that:

  • the center of the ellipse is ( h , k ) = ( 2 , −5 )
  • the coordinates of the vertices are ( h ± a , k ) = ( 2 ± 6 , −5 ) , or ( 4 , −5 ) and ( 8 , −5 )
  • the coordinates of the co-vertices are ( h , k ± b ) = ( 2 , 5 ± 9 ) , or ( 2 , 14 ) and ( 2 , 4 )
  • the coordinates of the foci are ( h ± c , k ) , where c = ± a 2 + b 2 . Solving for c , we have

c = ± 36 + 81 = ± 117 = ± 3 13

Therefore, the coordinates of the foci are ( 2 3 13 , −5 ) and ( 2 + 3 13 , −5 ) .

The equations of the asymptotes are y = ± b a ( x h ) + k = ± 3 2 ( x 2 ) 5.

Next, we plot and label the center, vertices, co-vertices, foci, and asymptotes and draw smooth curves to form the hyperbola, as shown in [link] .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Questions & Answers

calculate molarity of NaOH solution when 25.0ml of NaOH titrated with 27.2ml of 0.2m H2SO4
Gasin Reply
what's Thermochemistry
rhoda Reply
the study of the heat energy which is associated with chemical reactions
Kaddija
How was CH4 and o2 was able to produce (Co2)and (H2o
Edafe Reply
explain please
Victory
First twenty elements with their valences
Martine Reply
what is chemistry
asue Reply
what is atom
asue
what is the best way to define periodic table for jamb
Damilola Reply
what is the change of matter from one state to another
Elijah Reply
what is isolation of organic compounds
IKyernum Reply
what is atomic radius
ThankGod Reply
Read Chapter 6, section 5
Dr
Read Chapter 6, section 5
Kareem
Atomic radius is the radius of the atom and is also called the orbital radius
Kareem
atomic radius is the distance between the nucleus of an atom and its valence shell
Amos
Read Chapter 6, section 5
paulino
Bohr's model of the theory atom
Ayom Reply
is there a question?
Dr
when a gas is compressed why it becomes hot?
ATOMIC
It has no oxygen then
Goldyei
read the chapter on thermochemistry...the sections on "PV" work and the First Law of Thermodynamics should help..
Dr
Which element react with water
Mukthar Reply
Mgo
Ibeh
an increase in the pressure of a gas results in the decrease of its
Valentina Reply
definition of the periodic table
Cosmos Reply
What is the lkenes
Da Reply
what were atoms composed of?
Moses Reply
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply
Practice Key Terms 4

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask