<< Chapter < Page Chapter >> Page >

Access these online resources for additional instruction and practice with exponential functions.

Key equations

definition of the exponential function f ( x ) = b x ,  where   b > 0 ,   b 1
definition of exponential growth f ( x ) = a b x ,  where  a > 0 , b > 0 , b 1
compound interest formula A ( t ) = P ( 1 + r n ) n t   ,  where A ( t )  is the account value at time  t t  is the number of years P  is the initial investment, often called the principal r  is the annual percentage rate (APR), or nominal rate n  is the number of compounding periods in one year
continuous growth formula A ( t ) = a e r t ,  where
t is the number of unit time periods of growth
a is the starting amount (in the continuous compounding formula a is replaced with P, the principal)
e is the mathematical constant,     e 2.718282

Key concepts

  • An exponential function is defined as a function with a positive constant other than 1 raised to a variable exponent. See [link] .
  • A function is evaluated by solving at a specific value. See [link] and [link] .
  • An exponential model can be found when the growth rate and initial value are known. See [link] .
  • An exponential model can be found when the two data points from the model are known. See [link] .
  • An exponential model can be found using two data points from the graph of the model. See [link] .
  • An exponential model can be found using two data points from the graph and a calculator. See [link] .
  • The value of an account at any time t can be calculated using the compound interest formula when the principal, annual interest rate, and compounding periods are known. See [link] .
  • The initial investment of an account can be found using the compound interest formula when the value of the account, annual interest rate, compounding periods, and life span of the account are known. See [link] .
  • The number e is a mathematical constant often used as the base of real world exponential growth and decay models. Its decimal approximation is e 2.718282.
  • Scientific and graphing calculators have the key [ e x ] or [ exp ( x ) ] for calculating powers of e . See [link] .
  • Continuous growth or decay models are exponential models that use e as the base. Continuous growth and decay models can be found when the initial value and growth or decay rate are known. See [link] and [link] .

Section exercises

Verbal

Explain why the values of an increasing exponential function will eventually overtake the values of an increasing linear function.

Linear functions have a constant rate of change. Exponential functions increase based on a percent of the original.

Got questions? Get instant answers now!

Given a formula for an exponential function, is it possible to determine whether the function grows or decays exponentially just by looking at the formula? Explain.

Got questions? Get instant answers now!

The Oxford Dictionary defines the word nominal as a value that is “stated or expressed but not necessarily corresponding exactly to the real value.” Oxford Dictionary. http://oxforddictionaries.com/us/definition/american_english/nomina. Develop a reasonable argument for why the term nominal rate is used to describe the annual percentage rate of an investment account that compounds interest.

When interest is compounded, the percentage of interest earned to principal ends up being greater than the annual percentage rate for the investment account. Thus, the annual percentage rate does not necessarily correspond to the real interest earned, which is the very definition of nominal .

Got questions? Get instant answers now!

Questions & Answers

For each year t, the population of a forest of trees is represented by the function A(t) = 117(1.029)t. In a neighboring forest, the population of the same type of tree is represented by the function B(t) = 86(1.025)t.
Shakeena Reply
by how many trees did forest "A" have a greater number?
Shakeena
32.243
Kenard
how solve standard form of polar
Rhudy Reply
what is a complex number used for?
Drew Reply
It's just like any other number. The important thing to know is that they exist and can be used in computations like any number.
Steve
I would like to add that they are used in AC signal analysis for one thing
Scott
Good call Scott. Also radar signals I believe.
Steve
Is there any rule we can use to get the nth term ?
Anwar Reply
how do you get the (1.4427)^t in the carp problem?
Gabrielle Reply
A hedge is contrusted to be in the shape of hyperbola near a fountain at the center of yard.the hedge will follow the asymptotes y=x and y=-x and closest distance near the distance to the centre fountain at 5 yards find the eqution of the hyperbola
ayesha Reply
A doctor prescribes 125 milligrams of a therapeutic drug that decays by about 30% each hour. To the nearest hour, what is the half-life of the drug?
Sandra Reply
Find the domain of the function in interval or inequality notation f(x)=4-9x+3x^2
prince Reply
hello
Jessica Reply
Outside temperatures over the course of a day can be modeled as a sinusoidal function. Suppose the high temperature of ?105°F??105°F? occurs at 5PM and the average temperature for the day is ?85°F.??85°F.? Find the temperature, to the nearest degree, at 9AM.
Karlee Reply
if you have the amplitude and the period and the phase shift ho would you know where to start and where to end?
Jean Reply
rotation by 80 of (x^2/9)-(y^2/16)=1
Garrett Reply
thanks the domain is good but a i would like to get some other examples of how to find the range of a function
bashiir Reply
what is the standard form if the focus is at (0,2) ?
Lorejean Reply
a²=4
Roy Reply
Practice Key Terms 4

Get the best Precalculus course in your pocket!





Source:  OpenStax, Precalculus. OpenStax CNX. Jan 19, 2016 Download for free at https://legacy.cnx.org/content/col11667/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Precalculus' conversation and receive update notifications?

Ask