<< Chapter < Page Chapter >> Page >
In this section, you will:
  • Identify nondegenerate conic sections given their general form equations.
  • Use rotation of axes formulas.
  • Write equations of rotated conics in standard form.
  • Identify conics without rotating axes.

As we have seen, conic sections are formed when a plane intersects two right circular cones aligned tip to tip and extending infinitely far in opposite directions, which we also call a cone . The way in which we slice the cone will determine the type of conic section formed at the intersection. A circle is formed by slicing a cone with a plane perpendicular to the axis of symmetry of the cone. An ellipse is formed by slicing a single cone with a slanted plane not perpendicular to the axis of symmetry. A parabola is formed by slicing the plane through the top or bottom of the double-cone, whereas a hyperbola is formed when the plane slices both the top and bottom of the cone. See [link] .

The nondegenerate conic sections

Ellipses, circles, hyperbolas, and parabolas are sometimes called the nondegenerate conic sections , in contrast to the degenerate conic sections    , which are shown in [link] . A degenerate conic results when a plane intersects the double cone and passes through the apex. Depending on the angle of the plane, three types of degenerate conic sections are possible: a point, a line, or two intersecting lines.

Degenerate conic sections

Identifying nondegenerate conics in general form

In previous sections of this chapter, we have focused on the standard form equations for nondegenerate conic sections. In this section, we will shift our focus to the general form equation, which can be used for any conic. The general form is set equal to zero, and the terms and coefficients are given in a particular order, as shown below.

A x 2 + B x y + C y 2 + D x + E y + F = 0

where A , B , and C are not all zero. We can use the values of the coefficients to identify which type conic is represented by a given equation.

You may notice that the general form equation has an x y term that we have not seen in any of the standard form equations. As we will discuss later, the x y term rotates the conic whenever   B   is not equal to zero.

Conic Sections Example
ellipse 4 x 2 + 9 y 2 = 1
circle 4 x 2 + 4 y 2 = 1
hyperbola 4 x 2 9 y 2 = 1
parabola 4 x 2 = 9 y  or  4 y 2 = 9 x
one line 4 x + 9 y = 1
intersecting lines ( x 4 ) ( y + 4 ) = 0
parallel lines ( x 4 ) ( x 9 ) = 0
a point 4 x 2 + 4 y 2 = 0
no graph 4 x 2 + 4 y 2 = 1

General form of conic sections

A nondegenerate conic section    has the general form

A x 2 + B x y + C y 2 + D x + E y + F = 0

where A , B , and C are not all zero.

[link] summarizes the different conic sections where B = 0 , and A and C are nonzero real numbers. This indicates that the conic has not been rotated.

ellipse A x 2 + C y 2 + D x + E y + F = 0 ,   A C  and  A C > 0
circle A x 2 + C y 2 + D x + E y + F = 0 ,   A = C
hyperbola A x 2 C y 2 + D x + E y + F = 0  or  A x 2 + C y 2 + D x + E y + F = 0 , where A and C are positive
parabola A x 2 + D x + E y + F = 0  or  C y 2 + D x + E y + F = 0

Given the equation of a conic, identify the type of conic.

  1. Rewrite the equation in the general form, A x 2 + B x y + C y 2 + D x + E y + F = 0.
  2. Identify the values of A and C from the general form.
    1. If A and C are nonzero, have the same sign, and are not equal to each other, then the graph is an ellipse.
    2. If A and C are equal and nonzero and have the same sign, then the graph is a circle.
    3. If A and C are nonzero and have opposite signs, then the graph is a hyperbola.
    4. If either A or C is zero, then the graph is a parabola.

Questions & Answers

If c is the cost function for a particular product, find the marginal cost functions and their values at x=10 a. c(x) = 800+ 0.04x + 0.0002x² b. c(x) = 250 + 100x + 0.001x²
Mamush Reply
how can I find set theory
Ephraim Reply
how can I find set theory
Jarvis
is there an error on the one about the dime's thickness? says 2.2x10⁶=0.00135 m
Patrick Reply
hi, interested in algebra
Makan Reply
how to reduce an equation?
Makan
by manipulation of both side
Al
9(y+8)-27 is 9y+45. Why can't you reduce that to y+5? I know that's wrong but can't explain why
Patrick Reply
when you reduce an equation to its simplest terms, you can't change the value of the equation. reducing it to y + 5 is equivalent to dividing it by 9 which changes the value. you can multiply it by 1 or 9/9 which would give 9(y + 5). multiplying it by one does not change the value.
Philip
Given a polynomial expression, factor out the greatest common factor.
Hanu Reply
WHAT IS QUADRATIC EQUATION?
Charles Reply
WHAT IS SYSTEM OF LINEAR INEWUALITIES?
Charles
WHAT IS SYSTEM OF LINEAR INEWUALITIES?
Charles
complex perform
Angel
what is equation?
Charles Reply
what are equations?
Charles
Definition of economics according to karl Marx Thomas malthus Jeremy bentham David Ricardo J.K
Rakiya
Please help me is assignment
Rakiya
The 47th problem of Euclid
Kenneth
show that the set of all natural number form semi group under the composition of addition
Nikhil Reply
what is the meaning
Dominic
explain and give four Example hyperbolic function
Lukman Reply
_3_2_1
felecia
⅗ ⅔½
felecia
_½+⅔-¾
felecia
The denominator of a certain fraction is 9 more than the numerator. If 6 is added to both terms of the fraction, the value of the fraction becomes 2/3. Find the original fraction. 2. The sum of the least and greatest of 3 consecutive integers is 60. What are the valu
SABAL Reply
1. x + 6 2 -------------- = _ x + 9 + 6 3 x + 6 3 ----------- x -- (cross multiply) x + 15 2 3(x + 6) = 2(x + 15) 3x + 18 = 2x + 30 (-2x from both) x + 18 = 30 (-18 from both) x = 12 Test: 12 + 6 18 2 -------------- = --- = --- 12 + 9 + 6 27 3
Pawel
2. (x) + (x + 2) = 60 2x + 2 = 60 2x = 58 x = 29 29, 30, & 31
Pawel
ok
Ifeanyi
on number 2 question How did you got 2x +2
Ifeanyi
combine like terms. x + x + 2 is same as 2x + 2
Pawel
x*x=2
felecia
2+2x=
felecia
×/×+9+6/1
Debbie
Q2 x+(x+2)+(x+4)=60 3x+6=60 3x+6-6=60-6 3x=54 3x/3=54/3 x=18 :. The numbers are 18,20 and 22
Naagmenkoma
Mark and Don are planning to sell each of their marble collections at a garage sale. If Don has 1 more than 3 times the number of marbles Mark has, how many does each boy have to sell if the total number of marbles is 113?
mariel Reply
Mark = x,. Don = 3x + 1 x + 3x + 1 = 113 4x = 112, x = 28 Mark = 28, Don = 85, 28 + 85 = 113
Pawel
how do I set up the problem?
Harshika Reply
what is a solution set?
Harshika
find the subring of gaussian integers?
Rofiqul
hello, I am happy to help!
Shirley Reply
please can go further on polynomials quadratic
Abdullahi
hi mam
Mark
I need quadratic equation link to Alpa Beta
Abdullahi Reply
Practice Key Terms 3

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, College algebra. OpenStax CNX. Feb 06, 2015 Download for free at https://legacy.cnx.org/content/col11759/1.3
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'College algebra' conversation and receive update notifications?

Ask