# 5.8 Modeling using variation  (Page 4/14)

 Page 4 / 14

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=5{x}^{2}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=36,\text{\hspace{0.17em}}y=24.$

$y=10{x}^{3}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the fourth power of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=6{x}^{4}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=\frac{18}{{x}^{2}}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the cube of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the fourth power of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=\frac{81}{{x}^{4}}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the square root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely as the cube root of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and when

$y=\frac{20}{\sqrt[3]{x}}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly with $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as and $\text{\hspace{0.17em}}w\text{\hspace{0.17em}}$ and when then $\text{\hspace{0.17em}}y=100.$

$y=10xzw$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=4,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=72.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square root of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and when $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=25,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=100.$

$y=10x\sqrt{z}$

$\text{\hspace{0.17em}}y$ varies jointly as the square of $\text{\hspace{0.17em}}x$ the cube of $\text{\hspace{0.17em}}z$ and the square root of $\text{\hspace{0.17em}}W.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=1,z=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=36,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=48.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as and inversely as $\text{\hspace{0.17em}}w.\text{\hspace{0.17em}}$ When and $\text{\hspace{0.17em}}w=6,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=10.$

$y=4\frac{xz}{w}$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square root of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as the cube of $\text{\hspace{0.17em}}w\text{.\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,z=4,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=6.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as the square root of $\text{\hspace{0.17em}}w\text{\hspace{0.17em}}$ and the square of $\text{\hspace{0.17em}}t\text{\hspace{0.17em}.}$ When $\text{\hspace{0.17em}}x=3,z=1,w=25,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}t=2,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=6.$

$y=40\frac{xz}{\sqrt{w}{t}^{2}}$

## Numeric

For the following exercises, use the given information to find the unknown value.

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=12.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ wneh $\text{\hspace{0.17em}}x=20.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=16.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $x=8.$

$y=256$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=4.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the square root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=16,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=4.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=36.$

$y=6$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies directly as the cube root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=125,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=15.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1,000.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=2.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1.$

$y=6$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the square of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=4,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=3.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=2.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the cube of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=3,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=1.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1.$

$y=27$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the square root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=64,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=12.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=36.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies inversely with the cube root of $\text{\hspace{0.17em}}x.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=27,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=5.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=125.$

$y=3$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as When $\text{\hspace{0.17em}}x=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=2,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=16.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=3.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as When $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ $z=1,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=12,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=72.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1,\text{\hspace{0.17em}}$ $z=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=3.$

$y=18$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square of $\text{\hspace{0.17em}}\mathrm{z.}\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=4,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=144.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=4\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=5.$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the square root of $\text{\hspace{0.17em}}z.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=9,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=24.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z=25.$

$y=90$

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as $\text{\hspace{0.17em}}w.\text{\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=5,\text{\hspace{0.17em}}$ and then $y=4.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=3\text{\hspace{0.17em}}$ and and

$\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ varies jointly as the square of $\text{\hspace{0.17em}}x\text{\hspace{0.17em}}$ and the cube of $\text{\hspace{0.17em}}z\text{\hspace{0.17em}}$ and inversely as the square root of $\text{\hspace{0.17em}}w\text{.\hspace{0.17em}}$ When $\text{\hspace{0.17em}}x=2,\text{\hspace{0.17em}}$ $z=2,\text{\hspace{0.17em}}$ and $\text{\hspace{0.17em}}w=64,\text{\hspace{0.17em}}$ then $\text{\hspace{0.17em}}y=12.\text{\hspace{0.17em}}$ Find $\text{\hspace{0.17em}}y\text{\hspace{0.17em}}$ when $\text{\hspace{0.17em}}x=1,\text{\hspace{0.17em}}$ $z=3,\text{\hspace{0.17em}}$ and

$y=\frac{81}{2}$

if 9 sin theta + 40 cos theta = 41,prove that:41 cos theta = 41
what is complex numbers
give me treganamentry question
Solve 2cos x + 3sin x = 0.5
madras university algebra questions papers first year B. SC. maths
Hey
Rightspect
hi
chesky
Give me algebra questions
Rightspect
how to send you
Vandna
What does this mean
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
rajan
is there any case that you can have a polynomials with a degree of four?
victor
***sscc.edu/home/jdavidso/math/catalog/polynomials/fourth/fourth.html
Oliver
can you solve it step b step
give me some important question in tregnamentry
Anshuman
what is linear equation with one unknown 2x+5=3
-4
Joel
x=-4
Joel
x=-1
Joan
I was wrong. I didn't move all constants to the right of the equation.
Joel
x=-1
Cristian
y=x+1
gary
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
can I get help with this?
Wayne
Are they two separate problems or are the two functions a system?
Wilson
Also, is the first x squared in "x+4x+4"
Wilson
x^2+4x+4?
Wilson
thank you
Wilson
Wilson
f(x)=x square-root 2 +2x+1 how to solve this value
Wilson
what is algebra
The product of two is 32. Find a function that represents the sum of their squares.
Paul
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
hi
John
hi
Grace
what sup friend
John
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
Grace
sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
acha se dhek ke bata sin theta ke value
Ajay
sin theta ke ja gha sin square theta hoga
Ajay