<< Chapter < Page Chapter >> Page >

Solve the inequality and write the answer in interval notation: 5 6 x 3 4 + 8 3 x .

[ 3 14 , )

Got questions? Get instant answers now!

Understanding compound inequalities

A compound inequality    includes two inequalities in one statement. A statement such as 4 < x 6 means 4 < x and x 6. There are two ways to solve compound inequalities: separating them into two separate inequalities or leaving the compound inequality intact and performing operations on all three parts at the same time. We will illustrate both methods.

Solving a compound inequality

Solve the compound inequality: 3 2 x + 2 < 6.

The first method is to write two separate inequalities: 3 2 x + 2 and 2 x + 2 < 6. We solve them independently.

3 2 x + 2 and 2 x + 2 < 6 1 2 x 2 x < 4 1 2 x x < 2

Then, we can rewrite the solution as a compound inequality, the same way the problem began.

1 2 x < 2

In interval notation, the solution is written as [ 1 2 , 2 ) .

The second method is to leave the compound inequality intact, and perform solving procedures on the three parts at the same time.

3 2 x + 2 < 6 1 2 x < 4 Isolate the variable term, and subtract 2 from all three parts . 1 2 x < 2 Divide through all three parts by 2 .

We get the same solution: [ 1 2 , 2 ) .

Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the compound inequality: 4 < 2 x 8 10.

6 < x 9 or ( 6 , 9 ]

Got questions? Get instant answers now!

Solving a compound inequality with the variable in all three parts

Solve the compound inequality with variables in all three parts: 3 + x > 7 x 2 > 5 x 10.

Let's try the first method. Write two inequalities :

3 + x > 7 x 2 and 7 x 2 > 5 x 10 3 > 6 x 2 2 x 2 > −10 5 > 6 x 2 x > −8 5 6 > x x > −4 x < 5 6 −4 < x

The solution set is −4 < x < 5 6 or in interval notation ( −4 , 5 6 ) . Notice that when we write the solution in interval notation, the smaller number comes first. We read intervals from left to right, as they appear on a number line. See [link] .

A number line with the points -4 and 5/6 labeled.  Dots appear at these points and a line connects these two dots.
Got questions? Get instant answers now!
Got questions? Get instant answers now!

Solve the compound inequality: 3 y < 4 5 y < 5 + 3 y .

( 1 8 , 1 2 )

Got questions? Get instant answers now!

Solving absolute value inequalities

As we know, the absolute value of a quantity is a positive number or zero. From the origin, a point located at ( x , 0 ) has an absolute value of x , as it is x units away. Consider absolute value as the distance from one point to another point. Regardless of direction, positive or negative, the distance between the two points is represented as a positive number or zero.

An absolute value inequality is an equation of the form

| A | < B , | A | B , | A | > B , or  | A | B ,

Where A , and sometimes B , represents an algebraic expression dependent on a variable x. Solving the inequality means finding the set of all x - values that satisfy the problem. Usually this set will be an interval or the union of two intervals and will include a range of values.

There are two basic approaches to solving absolute value inequalities: graphical and algebraic. The advantage of the graphical approach is we can read the solution by interpreting the graphs of two equations. The advantage of the algebraic approach is that solutions are exact, as precise solutions are sometimes difficult to read from a graph.

Suppose we want to know all possible returns on an investment if we could earn some amount of money within $200 of $600. We can solve algebraically for the set of x- values such that the distance between x and 600 is less than 200. We represent the distance between x and 600 as | x 600 | , and therefore, | x 600 | 200 or

Questions & Answers

what is complex numbers
Ayushi Reply
give me treganamentry question
Anshuman Reply
Solve 2cos x + 3sin x = 0.5
shobana Reply
madras university algebra questions papers first year B. SC. maths
Kanniyappan Reply
Give me algebra questions
What does this mean
Michael Reply
cos(x+iy)=cos alpha+isinalpha prove that: sin⁴x=sin²alpha
rajan Reply
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
cos(x+iy)=cos aplha+i sinalpha prove that: sinh⁴y=sin²alpha
is there any case that you can have a polynomials with a degree of four?
can you solve it step b step
Ching Reply
give me some important question in tregnamentry
what is linear equation with one unknown 2x+5=3
Joan Reply
I was wrong. I didn't move all constants to the right of the equation.
Adityasuman x= - 1
what is the VA Ha D R X int Y int of f(x) =x²+4x+4/x+2 f(x) =x³-1/x-1
Shadow Reply
can I get help with this?
Are they two separate problems or are the two functions a system?
Also, is the first x squared in "x+4x+4"
thank you
Please see ***imgur.com/a/lpTpDZk for solutions
f(x)=x square-root 2 +2x+1 how to solve this value
Marjun Reply
factor or use quadratic formula
what is algebra
Ige Reply
The product of two is 32. Find a function that represents the sum of their squares.
if theta =30degree so COS2 theta = 1- 10 square theta upon 1 + tan squared theta
Martin Reply
how to compute this 1. g(1-x) 2. f(x-2) 3. g (-x-/5) 4. f (x)- g (x)
Yanah Reply
what sup friend
not much For functions, there are two conditions for a function to be the inverse function:   1--- g(f(x)) = x for all x in the domain of f     2---f(g(x)) = x for all x in the domain of g Notice in both cases you will get back to the  element that you started with, namely, x.
sin theta=3/4.prove that sec square theta barabar 1 + tan square theta by cosec square theta minus cos square theta
Umesh Reply
acha se dhek ke bata sin theta ke value
sin theta ke ja gha sin square theta hoga
I want to know trigonometry but I can't understand it anyone who can help
Siyabonga Reply
which part of trig?
differentiation doubhts
Practice Key Terms 4

Get the best Algebra and trigonometry course in your pocket!

Source:  OpenStax, Algebra and trigonometry. OpenStax CNX. Nov 14, 2016 Download for free at https://legacy.cnx.org/content/col11758/1.6
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Algebra and trigonometry' conversation and receive update notifications?