<< Chapter < Page Chapter >> Page >

Nitrogen oxyacids and salts

Nitrogen pentaoxide, N 2 O 5 , and NO 2 react with water to form nitric acid, HNO 3 . Alchemists, as early as the eighth century, knew nitric acid (shown in [link] ) as aqua fortis (meaning "strong water"). The acid was useful in the separation of gold from silver because it dissolves silver but not gold. Traces of nitric acid occur in the atmosphere after thunderstorms, and its salts are widely distributed in nature. There are tremendous deposits of Chile saltpeter, NaNO 3 , in the desert region near the boundary of Chile and Peru. Bengal saltpeter, KNO 3 , occurs in India and in other countries of the Far East.

A space filling model shows a blue atom labeled, “N,” bonded on three sides to red atoms labeled, “O.” One of the red atoms is bonded to a white atom labeled, “H.” A pair of Lewis structures is shown connected by a double-headed arrow. The left Lewis structure shows an oxygen atom with two lone pairs of electrons single bonded on the left to a hydrogen atom and on the right to a nitrogen atom. The nitrogen atom is in turn single bonded to an oxygen atom with three lone pairs of electrons in an upward position and double bonded to an oxygen atom with two lone pairs of electrons in a downward position. The right Lewis structure is the same as the left, but the double bonded oxygen is in the upward position and the single bonded oxygen is in the lower position in relation to the nitrogen atom.
This image shows the molecular structure (left) of nitric acid, HNO 3 and its resonance forms (right).

In the laboratory, it is possible to produce nitric acid by heating a nitrate salt (such as sodium or potassium nitrate) with concentrated sulfuric acid:

NaNO 3 ( s ) + H 2 SO 4 ( l ) Δ NaHSO 4 ( s ) + HNO 3 ( g )

The Ostwald process    is the commercial method for producing nitric acid. This process involves the oxidation of ammonia to nitric oxide, NO; oxidation of nitric oxide to nitrogen dioxide, NO 2 ; and further oxidation and hydration of nitrogen dioxide to form nitric acid:

4 NH 3 ( g ) + 5 O 2 ( g ) 4NO ( g ) + 6 H 2 O ( g )
2NO ( g ) + O 2 ( g ) 2 NO 2 ( g )
3 NO 2 ( g ) + H 2 O ( l ) 2 HNO 3 ( a q ) + NO ( g )

Or

4 NO 2 ( g ) + O 2 ( g ) + 2 H 2 O ( g ) 4 HNO 3 ( l )

Pure nitric acid is a colorless liquid. However, it is often yellow or brown in color because NO 2 forms as the acid decomposes. Nitric acid is stable in aqueous solution; solutions containing 68% of the acid are commercially available concentrated nitric acid. It is both a strong oxidizing agent and a strong acid.

The action of nitric acid on a metal rarely produces H 2 (by reduction of H + ) in more than small amounts. Instead, the reduction of nitrogen occurs. The products formed depend on the concentration of the acid, the activity of the metal, and the temperature. Normally, a mixture of nitrates, nitrogen oxides, and various reduction products form. Less active metals such as copper, silver, and lead reduce concentrated nitric acid primarily to nitrogen dioxide. The reaction of dilute nitric acid with copper produces NO. In each case, the nitrate salts of the metals crystallize upon evaporation of the resultant solutions.

Nonmetallic elements, such as sulfur, carbon, iodine, and phosphorus, undergo oxidation by concentrated nitric acid to their oxides or oxyacids, with the formation of NO 2 :

S ( s ) + 6 HNO 3 ( a q ) H 2 SO 4 ( a q ) + 6 NO 2 ( g ) + 2 H 2 O ( l )
C ( s ) + 4 HNO 3 ( a q ) CO 2 ( g ) + 4 NO 2 ( g ) + 2 H 2 O ( l )

Nitric acid oxidizes many compounds; for example, concentrated nitric acid readily oxidizes hydrochloric acid to chlorine and chlorine dioxide. A mixture of one part concentrated nitric acid and three parts concentrated hydrochloric acid (called aqua regia , which means royal water) reacts vigorously with metals. This mixture is particularly useful in dissolving gold, platinum, and other metals that are more difficult to oxidize than hydrogen. A simplified equation to represent the action of aqua regia on gold is:

Au ( s ) + 4HCl ( a q ) + 3 HNO 3 ( a q ) HAuCl 4 ( a q ) + 3 NO 2 ( g ) + 3 H 2 O ( l )

Questions & Answers

how do you get the 2/50
Abba Reply
number of sport play by 50 student construct discrete data
Aminu Reply
width of the frangebany leaves on how to write a introduction
Theresa Reply
Solve the mean of variance
Veronica Reply
Step 1: Find the mean. To find the mean, add up all the scores, then divide them by the number of scores. ... Step 2: Find each score's deviation from the mean. ... Step 3: Square each deviation from the mean. ... Step 4: Find the sum of squares. ... Step 5: Divide the sum of squares by n – 1 or N.
kenneth
what is error
Yakuba Reply
Is mistake done to something
Vutshila
Hy
anas
hy
What is the life teble
anas
hy
Jibrin
statistics is the analyzing of data
Tajudeen Reply
what is statics?
Zelalem Reply
how do you calculate mean
Gloria Reply
diveving the sum if all values
Shaynaynay
let A1,A2 and A3 events be independent,show that (A1)^c, (A2)^c and (A3)^c are independent?
Fisaye Reply
what is statistics
Akhisani Reply
data collected all over the world
Shaynaynay
construct a less than and more than table
Imad Reply
The sample of 16 students is taken. The average age in the sample was 22 years with astandard deviation of 6 years. Construct a 95% confidence interval for the age of the population.
Aschalew Reply
Bhartdarshan' is an internet-based travel agency wherein customer can see videos of the cities they plant to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400 a. what is the probability of getting more than 12,000 hits? b. what is the probability of getting fewer than 9,000 hits?
Akshay Reply
Bhartdarshan'is an internet-based travel agency wherein customer can see videos of the cities they plan to visit. The number of hits daily is a normally distributed random variable with a mean of 10,000 and a standard deviation of 2,400. a. What is the probability of getting more than 12,000 hits
Akshay
1
Bright
Sorry i want to learn more about this question
Bright
Someone help
Bright
a= 0.20233 b=0.3384
Sufiyan
a
Shaynaynay
How do I interpret level of significance?
Mohd Reply
It depends on your business problem or in Machine Learning you could use ROC- AUC cruve to decide the threshold value
Shivam
how skewness and kurtosis are used in statistics
Owen Reply
yes what is it
Taneeya
Got questions? Join the online conversation and get instant answers!
Jobilize.com Reply

Get Jobilize Job Search Mobile App in your pocket Now!

Get it on Google Play Download on the App Store Now




Source:  OpenStax, Chemistry. OpenStax CNX. May 20, 2015 Download for free at http://legacy.cnx.org/content/col11760/1.9
Google Play and the Google Play logo are trademarks of Google Inc.

Notification Switch

Would you like to follow the 'Chemistry' conversation and receive update notifications?

Ask